Filtering by
- All Subjects: Semantic Web
- All Subjects: Declarative programming
- Creators: Bansal, Ajay

This thesis deals with evaluating the performance of Presto in processing big RDF data against Apache Hive. A comparative analysis was also conducted against 4store, a native RDF store. To evaluate the performance Presto for big RDF data processing, a map-reduce program and a compiler, based on Flex and Bison, were implemented. The map-reduce program loads RDF data into HDFS while the compiler translates SPARQL queries into a subset of SQL that Presto (and Hive) can understand. The evaluation was done on four and eight node Linux clusters installed on Microsoft Windows Azure platform with RDF datasets of size 10, 20, and 30 million triples. The results of the experiment show that Presto has a much higher performance than Hive can be used to process big RDF data. The thesis also proposes an architecture based on Presto, Presto-RDF, that can be used to process big RDF data.

To facilitate rapid, correct, efficient, and intuitive development of graph based solutions we propose a new programming language construct - the search statement. Given a supra-root node, a procedure which determines the children of a given parent node, and optional definitions of the fail-fast acceptance or rejection of a solution, the search statement can conduct a search over any graph or network. Structurally, this statement is modelled after the common switch statement and is put into a largely imperative/procedural context to allow for immediate and intuitive development by most programmers. The Go programming language has been used as a foundation and proof-of-concept of the search statement. A Go compiler is provided which implements this construct.

Users are spoilt for choices. It would be very helpful for them to make a choice if there is a single place where they can visually compare the offerings of various MOOC providers for the course they are interested in. Previous work has been done in this area through the MOOCLink project that involved integrating data from Coursera, EdX, and Udacity and generation of linked data, i.e. Resource Description Framework (RDF) triples.
The research objective of this thesis is to determine a methodology by which the quality
of data available through the MOOCLink application is maintained, as there are lots of new courses being constantly added and old courses being removed by data providers. This thesis presents the integration of data from various MOOC providers and algorithms for incrementally updating linked data to maintain their quality and compare it against a naïve approach in order to constantly keep the users engaged with up-to-date data. A master threshold value was determined through experiments and analysis that quantifies one algorithm being better than the other in terms of time efficiency. An evaluation of the tool shows the effectiveness of the algorithms presented in this thesis.



User interface development on iOS is in a major transitionary state as Apple introduces a declarative and interactive framework called SwiftUI. SwiftUI’s success depends on how well it integrates its new tooling for novice developers. This paper will demonstrate and discuss where SwiftUI succeeds and fails at carving a new path for user interface development for new developers. This is done by comparisons against its existing imperative UI framework UIKit as well as elaborating on the background of SwiftUI and examples of how SwiftUI works to help developers. The paper will also discuss what exactly led to SwiftUI and how it is currently faring on Apple's latest operating systems. SwiftUI is a framework growing and evolving to serve the needs of 5 very different platforms with code that claims to be simpler to write and easier to deploy. The world of UI programming in iOS has been dominated by a Storyboard canvas for years, but SwiftUI claims to link this graphic-first development process with the code programmers are used to by keeping them side by side in constant sync. This bold move requires interactive programming capable of recompilation on the fly. As this paper will discuss, SwiftUI has garnered a community of developers giving it the main property it needs to succeed: a component library.