Matching Items (3)

Filtering by

Clear all filters

135457-Thumbnail Image.png

Improved Finite Sample Estimate of A Nonparametric Divergence Measure

Description

This work details the bootstrap estimation of a nonparametric information divergence measure, the Dp divergence measure, using a power law model. To address the challenge posed by computing accurate divergence estimates given finite size data, the bootstrap approach is used

This work details the bootstrap estimation of a nonparametric information divergence measure, the Dp divergence measure, using a power law model. To address the challenge posed by computing accurate divergence estimates given finite size data, the bootstrap approach is used in conjunction with a power law curve to calculate an asymptotic value of the divergence estimator. Monte Carlo estimates of Dp are found for increasing values of sample size, and a power law fit is used to relate the divergence estimates as a function of sample size. The fit is also used to generate a confidence interval for the estimate to characterize the quality of the estimate. We compare the performance of this method with the other estimation methods. The calculated divergence is applied to the binary classification problem. Using the inherent relation between divergence measures and classification error rate, an analysis of the Bayes error rate of several data sets is conducted using the asymptotic divergence estimate.

Contributors

Agent

Created

Date Created
2016-05

137100-Thumbnail Image.png

Maximum Entropy Surrogation in Multiple Channel Signal Detection

Description

Multiple-channel detection is considered in the context of a sensor network where data can be exchanged directly between sensor nodes that share a common edge in the network graph. Optimal statistical tests used for signal source detection with multiple noisy

Multiple-channel detection is considered in the context of a sensor network where data can be exchanged directly between sensor nodes that share a common edge in the network graph. Optimal statistical tests used for signal source detection with multiple noisy sensors, such as the Generalized Coherence (GC) estimate, use pairwise measurements from every pair of sensors in the network and are thus only applicable when the network graph is completely connected, or when data are accumulated at a common fusion center. This thesis presents and exploits a new method that uses maximum-entropy techniques to estimate measurements between pairs of sensors that are not in direct communication, thereby enabling the use of the GC estimate in incompletely connected sensor networks. The research in this thesis culminates in a main conjecture supported by statistical tests regarding the topology of the incomplete network graphs.

Contributors

Agent

Created

Date Created
2014-05

147972-Thumbnail Image.png

Audio Waveform Sample SVD Compression and Impact on Performance

Description

Lossy compression is a form of compression that slightly degrades a signal in ways that are ideally not detectable to the human ear. This is opposite to lossless compression, in which the sample is not degraded at all. While lossless

Lossy compression is a form of compression that slightly degrades a signal in ways that are ideally not detectable to the human ear. This is opposite to lossless compression, in which the sample is not degraded at all. While lossless compression may seem like the best option, lossy compression, which is used in most audio and video, reduces transmission time and results in much smaller file sizes. However, this compression can affect quality if it goes too far. The more compression there is on a waveform, the more degradation there is, and once a file is lossy compressed, this process is not reversible. This project will observe the degradation of an audio signal after the application of Singular Value Decomposition compression, a lossy compression that eliminates singular values from a signal’s matrix.

Contributors

Agent

Created

Date Created
2021-05