Matching Items (2)
Filtering by

Clear all filters

157423-Thumbnail Image.png
Description
Aboveground net primary production (ANPP) is an important ecosystem process that, in drylands, is most frequently limited by water availability. Water availability for plants is in part controlled by the water holding capacity of soils. Available water holding capacity (AWHC) of soils is strongly influenced by soil texture and depth.

Aboveground net primary production (ANPP) is an important ecosystem process that, in drylands, is most frequently limited by water availability. Water availability for plants is in part controlled by the water holding capacity of soils. Available water holding capacity (AWHC) of soils is strongly influenced by soil texture and depth. This study drew upon localized rain gauge data and four data-sets of cover-line and biomass data to estimate ANPP and to determine annual precipitation (PPT). I measured soil depth to caliche and texture by layer of 112 plots across the four landscape units for which estimation of ANPP were available. A pedotransfer function was used to estimate AWHC from soil depth increments to depth of caliche measurements and texture analysis. These data were analyzed using simple and multivariate regression to test the effect of annual precipitation and available water holding capacity on aboveground net primary production. Soil texture remained constant among all plots (sandy loam) and depth to caliche varied from 15.16 cm to 189 cm. AWHC and the interaction term (PPT*AWHC) were insignificant (p=0.142, p=0.838) and annual PPT accounted for 18.4% of the variation in ANPP. The y-intercept was significantly different for ANPP ~ annual PPT when considering AWHC values either above or below 3 cm. Shrub ANPP was insensitive to precipitation regardless of AWHC (R2=-0.012, R2=0.014). Results from this study indicate that a model incorporating annual PPT and AWHC may not serve as a good predictor for ANPP at a site level where there is little variation in soil texture.
ContributorsWagner, Svenja K (Author) / Sala, Osvaldo E. (Thesis advisor) / Cease, Arianne (Committee member) / Hall, Sharon (Committee member) / Peters, Debra (Committee member) / Arizona State University (Publisher)
Created2019
135424-Thumbnail Image.png
Description
Aquatic macroinvertebrates can be key contributors to nitrogen (N) and phosphorus (P) cycling in streams. Though they exhibit intense control via trophic interactions and nutrient conversion, they may be influenced by other environmental factors that can determine total excretion-derived N, P, and N:P. Garden Canyon and Ramsey Canyon, two streams

Aquatic macroinvertebrates can be key contributors to nitrogen (N) and phosphorus (P) cycling in streams. Though they exhibit intense control via trophic interactions and nutrient conversion, they may be influenced by other environmental factors that can determine total excretion-derived N, P, and N:P. Garden Canyon and Ramsey Canyon, two streams in the Huachuca Mountain Range in Southern Arizona, USA, host similar insect communities, but only Garden Canyon experiences a seasonal P limitation due to the co-precipitation of phosphate with calcium carbonate (CaCO3) in its benthic substrate (Corman et al. 2015). I performed an analysis of excretion rates of aquatic insects living in these streams to test if the P limitation is reflected in rates that insects recycle nutrients. A lower mean N:P of all insect excretion rates in Garden provides evidence for an ecosystem-scale effect, though the differences in N:P of excretion rates by individual taxa between streams did not support the hypothesis. Attributing excretion rates to actual insect densities in three years reveals that natural-occurring fluctuations in excretion rates can operate on the same magnitude as fluctuations in abundances and causes steep differences in nutrient conversion between streams. Lastly, I found that since these streams support immense insect diversity, they receive excretion-derived N and P from taxa in many different functional feeding groups, which illustrates ecosystem resilience and uniqueness.
ContributorsSanders, Ashley Marie (Author) / Sabo, John (Thesis director) / Cease, Arianne (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05