Matching Items (2)
Filtering by

Clear all filters

152998-Thumbnail Image.png
Description
An animal's ability to produce protein-based silk materials has evolved independently in many different arthropod lineages, satisfying various ecological necessities. However, regardless of their wide range of uses and their potential industrial and biomedical applications, advanced knowledge on the molecular structure of silk biopolymers is largely limited to those produced

An animal's ability to produce protein-based silk materials has evolved independently in many different arthropod lineages, satisfying various ecological necessities. However, regardless of their wide range of uses and their potential industrial and biomedical applications, advanced knowledge on the molecular structure of silk biopolymers is largely limited to those produced by spiders (order Araneae) and silkworms (order Lepidoptera). This thesis provides an in-depth molecular-level characterization of silk fibers produced by two vastly different insects: the caddisfly larvae (order Trichoptera) and the webspinner (order Embioptera).

The molecular structure of caddisfly larval silk from the species Hesperophylax consimilis was characterized using solid-state nuclear magnetic resonance (ss-NMR) and Wide Angle X-ray Diffraction (WAXD) techniques. This insect, which typically dwells in freshwater riverbeds and streams, uses silk fibers as a strong and sticky nanoadhesive material to construct cocoons and cases out available debris. Conformation-sensitive 13C chemical shifts and 31P chemical shift anisotropy (CSA) information strongly support a unique protein motif in which phosphorylated serine- rich repeats (pSX)4 complex with di- and trivalent cations to form rigid nanocrystalline β-sheets. Additionally, it is illustrated through 31P NMR and WAXD data that these nanocrystalline structures can be reversibly formed, and depend entirely on the presence of the stabilizing cations.

Nanofiber silks produced by webspinners (order Embioptera) were also studied herein. This work addresses discrepancies in the literature regarding fiber diameters and tensile properties, revealing that the nanofibers are about 100 nm in diameter, and are stronger (around 500 MPa mean ultimate stress) than previous works suggested. Fourier-transform Infrared Spectroscopy (FT-IR), NMR and WAXD results find that approximately 70% of the highly repetitive glycine- and serine-rich protein core is composed of β-sheet nanocrystalline structures. In addition, FT-IR and Gas-chromatography mass spectroscopy (GC-MS) data revealed a hydrophobic surface coating rich in long-chain lipids. The effect of this surface coating was studied with contact angle techniques; it is shown that the silk sheets are extremely hydrophobic, yet due to the microstructural and nanostructural details of the silk surface, are surprisingly adhesive to water.
ContributorsAddison, John Bennett (Author) / Yarger, Jeffery L (Thesis advisor) / Holland, Gregory P (Thesis advisor) / Wang, Xu (Committee member) / Ros, Robert (Committee member) / Arizona State University (Publisher)
Created2014
158686-Thumbnail Image.png
Description
Delamination of solar module interfaces often occurs in field-tested solar modules after decades of service due to environmental stressors such as humidity. In the presence of water, the interfaces between the encapsulant and the cell, glass, and backsheet all experience losses of adhesion, exposing the module to accelerated degradation. Understanding

Delamination of solar module interfaces often occurs in field-tested solar modules after decades of service due to environmental stressors such as humidity. In the presence of water, the interfaces between the encapsulant and the cell, glass, and backsheet all experience losses of adhesion, exposing the module to accelerated degradation. Understanding the relation between interfacial adhesion and water content inside photovoltaic modules can help mitigate detrimental power losses. Water content measurements via water reflectometry detection combined with 180° peel tests were used to study adhesion of module materials exposed to damp heat and dry heat conditions. The effect of temperature, cumulative water dose, and water content on interfacial adhesion between ethylene vinyl acetate and (1) glass, (2) front of the cell, and (3) backsheet was studied. Temperature and time decreased adhesion at all these interfaces. Water content in the sample during the measurement showed significant decreases in adhesion for the Backsheet/Ethylene vinyl acetate interface. Water dose showed little effect for the Glass/ Ethylene vinyl acetate and Backsheet/ Ethylene vinyl acetate interfaces, but there was significant adhesion loss with water dose at the front cell busbar/encapsulant interface. Initial tensile test results to monitor the effects of the mechanical properties ethylene vinyl acetate and backsheet showed water content increasing the strength of ethylene vinyl acetate during plastic deformation but no change in the strength of the backsheet properties. This mechanical property change is likely inducing variation along the peel interface to possibly convolute the adhesion measurements conducted or to explain the variation seen for the water saturated and dried peel test sample types.
ContributorsTheut, Nicholas (Author) / Bertoni, Mariana (Thesis advisor) / Holman, Zachary (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2020