Matching Items (3)
Filtering by

Clear all filters

151067-Thumbnail Image.png
Description
Aqueous solutions of temperature-responsive copolymers based on N-isopropylacrylamide (NIPAAm) hold promise for medical applications because they can be delivered as liquids and quickly form gels in the body without organic solvents or chemical reaction. However, their gelation is often followed by phase-separation and shrinking. Gel shrinking and water loss is

Aqueous solutions of temperature-responsive copolymers based on N-isopropylacrylamide (NIPAAm) hold promise for medical applications because they can be delivered as liquids and quickly form gels in the body without organic solvents or chemical reaction. However, their gelation is often followed by phase-separation and shrinking. Gel shrinking and water loss is a major limitation to using NIPAAm-based gels for nearly any biomedical application. In this work, a graft copolymer design was used to synthesize polymers which combine the convenient injectability of poly(NIPAAm) with gel water content controlled by hydrophilic side-chain grafts based on Jeffamine® M-1000 acrylamide (JAAm). The first segment of this work describes the synthesis and characterization of poly(NIPAAm-co-JAAm) copolymers which demonstrates controlled swelling that is nearly independent of LCST. The graft copolymer design was then used to produce a degradable antimicrobial-eluting gel for prevention of prosthetic joint infection. The resorbable graft copolymer gels were shown to have three unique characteristics which demonstrate their suitability for this application. First, antimicrobial release is sustained and complete within 1 week. Second, the gels behave like viscoelastic fluids, enabling complete surface coverage of an implant without disrupting fixation or movement. Finally, the gels degrade rapidly within 1-6 weeks, which may enable their use in interfaces where bone healing takes place. Graft copolymer hydrogels were also developed which undergo Michael addition in situ with poly(ethylene glycol) diacrylate to form elastic gels for endovascular embolization of saccular aneurysms. Inclusion of JAAm grafts led to weaker physical crosslinking and faster, more complete chemical crosslinking. JAAm grafts prolonged the delivery window of the system from 30 seconds to 220 seconds, provided improved gel swelling, and resulted in stronger, more elastic gels within 30 minutes after delivery.
ContributorsOverstreet, Derek (Author) / Caplan, Michael (Thesis advisor) / Massia, Stephen (Committee member) / Mclaren, Alexander (Committee member) / Vernon, Brent (Committee member) / McLemore, Ryan (Committee member) / Arizona State University (Publisher)
Created2012
137550-Thumbnail Image.png
Description
This report provides information concerning qualities of methylcellulose and how those properties affect further experimentation within the biomedical world. Utilizing the compound’s biocompatibility many issues, ranging from surgical to cosmetic, can be solved. As of recent, studies indicate, methylcellulose has been used as a physically cross-linked gel, which

This report provides information concerning qualities of methylcellulose and how those properties affect further experimentation within the biomedical world. Utilizing the compound’s biocompatibility many issues, ranging from surgical to cosmetic, can be solved. As of recent, studies indicate, methylcellulose has been used as a physically cross-linked gel, which cannot sustain a solid form within the body. Therefore, this report will ultimately explore the means of creating a non-degradable, injectable, chemically cross-linking methylcellulose- based hydrogel. Methylcellulose will be evaluated and altered in experiments conducted within this report and a chemical cross-linker, developed from Jeffamine ED 2003 (O,O′-Bis(2-aminopropyl) polypropylene glycol-block-polyethylene glycol-block-polypropylene glycol), will be created. Experimentation with these elements is outlined here, and will ultimately prompt future revisions and analysis.
ContributorsBundalo, Zoran Luka (Author) / Vernon, Brent (Thesis director) / LaBelle, Jeffrey (Committee member) / Overstreet, Derek (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
153830-Thumbnail Image.png
Description
Polymer-gold composite particles are of tremendous research interests. Contributed by their unique structures, these particles demonstrate superior properties for optical, catalytic and electrical applications. Moreover, the incorporation of “smart” polymers into polymer-gold composite particles enables the composite particles synergistically respond to environment-stimuli like temperature, pH and light with promising applications

Polymer-gold composite particles are of tremendous research interests. Contributed by their unique structures, these particles demonstrate superior properties for optical, catalytic and electrical applications. Moreover, the incorporation of “smart” polymers into polymer-gold composite particles enables the composite particles synergistically respond to environment-stimuli like temperature, pH and light with promising applications in multiple areas.

A novel Pickering emulsion polymerization route is found for synthesis of core-shell structured polymer-gold composite particles. It is found that the surface coverage of gold nanoparticles (AuNP) on a polystyrene core is influenced by gold nanoparticle concentration and hydrophobicity. More importantly, the absorption wavelength of polystyrene-gold composite particles is tunable by adjusting AuNP interparticle distance. Further, core-shell structured polystyrene-gold composite particles demonstrate excellent catalyst recyclability.

Asymmetric polystyrene-gold composite particles are successfully synthesized via seeded emulsion polymerization, where AuNPs serve as seeds, allowing the growth of styrene monomers/oligomers on them. These particles also demonstrate excellent catalyst recyclability. Further, monomers of “smart” polymers, poly (N-isopropylacrylamide) (PNIPAm), are successfully copolymerized into asymmetric composite particles, enabling these particles’ thermo-responsiveness with significant size variation around lower critical solution temperature (LCST) of 31°C. The significant size variation gives rise to switchable scattering intensity property, demonstrating potential applications in intensity-based optical sensing.

Multipetal and dumbbell structured gold-polystyrene composite particles are also successfully synthesized via seeded emulsion polymerization. It is intriguing to observe that by controlling reaction time and AuNP size, tetrapetal-structured, tripetal-structured and dumbbell-structured gold-polystyrene are obtained. Further, “smart” PNIPAm polymers are successfully copolymerized into dumbbell-shaped particles, showing significant size variation around LCST. Self-modulated catalytic activity around LCST is achieved for these particles. It is hypothesized that above LCST, the significant shrinkage of particles limits diffusion of reaction molecules to the surface of AuNPs, giving a reduced catalytic activity.

Finally, carbon black (CB) particles are successfully employed for synthesis of core- shell PNIPAm/polystyrene-CB particles. The thermo-responsive absorption characteristics of PNIPAm/polystyrene-CB particles enable them potentially suitable to serve as “smart” nanofluids with self-controlled temperature. Compared to AuNPs, CB particles provide desirable performance here, because they show no plasmon resonance in visible wavelength range, whereas AuNPs’ absorption in the visible wavelength range is undesirable.
ContributorsZhang, Mingmeng (Author) / Dai, Lenore L (Committee member) / Phelan, Patrick E (Committee member) / Otanicar, Todd P (Committee member) / Lin, Jerry (Committee member) / He, Ximin (Committee member) / Arizona State University (Publisher)
Created2015