Matching Items (4)

Vida Sin Agua: Vanishing Water in the Valley of the Sun

Description

The Colorado River is the lifeblood for seven Basin States including Colorado, Utah, Wyoming, New Mexico, Arizona, California and Nevada. This water source aided westward expansion and allowed the arid

The Colorado River is the lifeblood for seven Basin States including Colorado, Utah, Wyoming, New Mexico, Arizona, California and Nevada. This water source aided westward expansion and allowed the arid Southwest to grow. Today, the river is over-allocated resulting in reduced flows. This could lead to water challenges in Arizona and the other Basin states. This river is the single largest entity from which Arizona receives water. Despite this, Arizona is still better situated for water cutbacks than other states like California. Arizona has more than nine million acre-feet of banked underground water and access to other water sources including the Salt and Verde rivers. Government officials are making decisions now that will affect water usage in Arizona for decades and generations to come. Digital media, such as iPad magazines are a good way to reach this technologically savvy generation and engage them concerning important issues. Designing for digital platforms presents unique opportunities. This platform requires solid content and visually appealing design to attract a Millennial audience born between the years 1981 and 1996, according to Pew Research Center. Digital magazines currently present a small segment of the media market, however this segment is growing exponentially. A study by Pew Research Center reports that this slice of the population is interested in consuming the news and emerging technologies such as digital magazines. These are good ways to reach and interest a digitally engaged readership. Reaching this age group is important because the Millennial generation will need to determine the future of the Colorado River and water use in Arizona. To ensure the future of water in the West, this generation needs to "learn about the reality of our water supply, what our real water challenges are and then get engaged and have a voice in what we do about our water planning for the future" (Porter, 2015). DISCLAIMER: The digital magazine was created in InDesign with interactive PDFs, which are best viewed on tablets. Screenshots of the magazine are included to demonstrate the magazine.

Contributors

Created

Date Created
  • 2016-05

155022-Thumbnail Image.png

Climate resilience and vulnerability of the Salt River Project reservoir system, present and future

Description

Water resource systems have provided vital support to transformative growth in the Southwest United States; and for more than a century the Salt River Project (SRP) has served as a

Water resource systems have provided vital support to transformative growth in the Southwest United States; and for more than a century the Salt River Project (SRP) has served as a model of success among multipurpose federal reclamation projects, currently delivering approximately 40% of water demand in the metropolitan Phoenix area. Drought concerns have sensitized water management to risks posed by natural variability and forthcoming climate change.

Full simulations originating in climate modeling have been the conventional approach to impacts assessment. But, once debatable climate projections are applied to hydrologic models challenged to accurately represent the region’s arid hydrology, the range of possible scenarios enlarges as uncertainties propagate through sequential levels of modeling complexity. Numerous issues render future projections frustratingly uncertain, leading many researchers to conclude it will be some decades before hydroclimatic modeling can provide specific and useful information to water management.

Alternatively, this research investigation inverts the standard approach to vulnerability assessment and begins with characterization of the threatened system, proceeding backwards to the uncertain climate future. Thorough statistical analysis of historical watershed climate and runoff enabled development of (a) a stochastic simulation methodology for net basin supply (NBS) that renders the entire range of droughts, and (b) hydrologic sensitivities to temperature and precipitation changes. An operations simulation model was developed for assessing the SRP reservoir system’s cumulative response to inflow variability and change. After analysis of the current system’s drought response, a set of climate change forecasts for the balance of this century were developed and translated through hydrologic sensitivities to drive alternative NBS time series assessed by reservoir operations modeling.

Statistically significant changes in key metrics were found for climate change forecasts, but the risk of reservoir depletion was found to remain zero. System outcomes fall within ranges to which water management is capable of responding. Actions taken to address natural variability are likely to be the same considered for climate change adaptation. This research approach provides specific risk assessments per unambiguous methods grounded in observational evidence in contrast to the uncertain projections thus far prepared for the region.

Contributors

Agent

Created

Date Created
  • 2016

155737-Thumbnail Image.png

Impacts of land use and land cover change on urban hydroclimate of Colorado River Basin

Description

Rapid urbanization and population growth occurring in the cities of South Western

United States have led to significant modifications in its environment at local and

regional scales. Both local and regional climate

Rapid urbanization and population growth occurring in the cities of South Western

United States have led to significant modifications in its environment at local and

regional scales. Both local and regional climate changes are expected to have massive

impacts on the hydrology of Colorado River Basin (CRB), thereby accentuating the need

of study of hydro-climatic impacts on water resource management in this region. This

thesis is devoted to understanding the impact of land use and land cover (LULC) changes

on the local and regional hydroclimate, with the goal to address urban planning issues

and provide guidance for sustainable development.

In this study, three densely populated urban areas, viz. Phoenix, Las Vegas and

Denver in the CRB are selected to capture the various dimensions of the impacts of land

use changes on the regional hydroclimate in the entire CRB. Weather Research and

Forecast (WRF) model, incorporating the latest urban modeling system, is adopted for

regional climate modeling. Two major types of urban LULC changes are studied in this

Thesis: (1) incorporation of urban trees with their radiative cooling effect, tested in

Phoenix metropolitan, and (2) projected urban expansion in 2100 obtained from

Integrated Climate and Land Use Scenarios (ICLUS) developed by the US

Environmental Protection Agency for all three cities.

The results demonstrated prominent nocturnal cooling effect of due to radiative

shading effect of the urban trees for Phoenix reducing urban surface and air temperature

by about 2~9 °C and 1~5 °C respectively and increasing relative humidity by 10~20%

during an mean diurnal cycle. The simulations of urban growth in CRB demonstratedii

nocturnal warming of about 0.36 °C, 1.07 °C, and 0.94 °C 2m-air temperature and

comparatively insignificant change in daytime temperature, with the thermal environment

of Denver being the most sensitive the urban growth. The urban hydroclimatic study

carried out in the thesis assists in identifying both context specific and generalizable

relationships, patterns among the cities, and is expected to facilitate urban planning and

management in local (cities) and regional scales.

Contributors

Agent

Created

Date Created
  • 2017

156248-Thumbnail Image.png

Evaluation of CMIP5 historical simulations in the Colorado River Basin

Description

The Colorado River Basin (CRB) is the primary source of water in the

southwestern United States. A key step to reduce the uncertainty of future streamflow

projections in the CRB is to

The Colorado River Basin (CRB) is the primary source of water in the

southwestern United States. A key step to reduce the uncertainty of future streamflow

projections in the CRB is to evaluate the performance of historical simulations of General

Circulation Models (GCMs). In this study, this challenge is addressed by evaluating the

ability of nineteen GCMs from the Coupled Model Intercomparison Project Phase Five

(CMIP5) and four nested Regional Climate Models (RCMs) in reproducing the statistical

properties of the hydrologic cycle and temperature in the CRB. To capture the transition

from snow-dominated to semiarid regions, analyses are conducted by spatially averaging

the climate variables in four nested sub-basins. Most models overestimate the mean

annual precipitation (P) and underestimate the mean annual temperature (T) at all

locations. While a group of models capture the mean annual runoff at all sub-basins with

different strengths of the hydrological cycle, another set of models overestimate the mean

annual runoff, due to a weak cycle in the evaporation channel. An abrupt increase in the

mean annual T in observed and most of the simulated time series (~0.8 °C) is detected at

all locations despite the lack of any statistically significant monotonic trends for both P

and T. While all models simulate the seasonality of T quite well, the phasing of the

seasonal cycle of P is fairly reproduced in just the upper, snow-dominated sub-basin.

Model performances degrade in the larger sub-basins that include semiarid areas, because

several GCMs are not able to capture the effect of the North American monsoon. Finally,

the relative performances of the climate models in reproducing the climatologies of P and

T are quantified to support future impact studies in the basin.

Contributors

Agent

Created

Date Created
  • 2018