Matching Items (2)

Modeling Biological and Optical Tools Towards Achieving Deeper Levels of Brain Stimulation using OLEDs

Description

Optogenetics presents the ability to control membrane dynamics through the usage of transfected proteins (opsins) and light stimulation. However, as the field continues to grow, the original biological and stimulation

Optogenetics presents the ability to control membrane dynamics through the usage of transfected proteins (opsins) and light stimulation. However, as the field continues to grow, the original biological and stimulation tools used have become dated or limited in their uses. The usage of Organic Light Emitting Diodes (OLEDs) in optical stimulation offers greater resolution, finer control of pixel arrays, and the increased functionality of a flexible display at the cost of lower irradiance power density. This study was done to simulate methods using genetic and optical tools towards decreasing the threshold irradiance needed to initiate an action potential in a ChR2 expressing neuron. Simulations show that pulsatile stimulation can decrease threshold irradiances by increasing the overall duration of stimulus while keeping individual pulse durations below 5 ms. Furthermore, the redistribution of Channelrhodopsin-2 (ChR2) to the apical dendrites and a change in wavelength to 625 nm both result in lower threshold irradiances. However, the model used has many discrepancies and has room for improvement in areas such as the light distribution model and ChR2 dynamics. The simulations run with this model however still present valuable insight and knowledge towards the usage of new stimulation methods and revisions on existing protocols.

Contributors

Agent

Created

Date Created
  • 2016-05

Novel organic light emitting diodes for optogenetic experiments

Description

Optical Fibers coupled to laser light sources, and Light Emitting Diodes are the two classes of technologies used for optogenetic experiments. Arizona State University's Flexible Display Center fabricates novel flexible

Optical Fibers coupled to laser light sources, and Light Emitting Diodes are the two classes of technologies used for optogenetic experiments. Arizona State University's Flexible Display Center fabricates novel flexible Organic Light Emitting Diodes(OLEDs). These OLEDs have the capability of being monolithically fabricated over flexible, transparent plastic substrates and having power efficient ways of addressing high density arrays of LEDs. This thesis critically evaluates the technology by identifying the key advantages, current limitations and experimentally assessing the technology in in-vivo and in-vitro animal models. For in-vivo testing, the emitted light from a flat OLED panel was directly used to stimulate the neo-cortex in the M1 region of transgenic mice expressing ChR2 (B6.Cg-Tg (Thy1-ChR2/EYFP) 9Gfng/J). An alternative stimulation paradigm using a collimating optical system coupled with an optical fiber was used for stimulating neurons in layer 5 of the motor cortex in the same transgenic mice. EMG activity was recorded from the contralateral vastus lateralis muscles. In vitro testing of the OLEDs was done in primary cortical neurons in culture transfected with blue light sensitive ChR2. The neurons were cultured on a microelectrode array for taking neuronal recordings.

Contributors

Agent

Created

Date Created
  • 2015