Matching Items (6)

135355-Thumbnail Image.png

Stochastic parameterization of the proliferation-diffusion model of brain cancer in a Murine model

Description

Glioblastoma multiforme (GBM) is a malignant, aggressive and infiltrative cancer of the central nervous system with a median survival of 14.6 months with standard care. Diagnosis of GBM is made

Glioblastoma multiforme (GBM) is a malignant, aggressive and infiltrative cancer of the central nervous system with a median survival of 14.6 months with standard care. Diagnosis of GBM is made using medical imaging such as magnetic resonance imaging (MRI) or computed tomography (CT). Treatment is informed by medical images and includes chemotherapy, radiation therapy, and surgical removal if the tumor is surgically accessible. Treatment seldom results in a significant increase in longevity, partly due to the lack of precise information regarding tumor size and location. This lack of information arises from the physical limitations of MR and CT imaging coupled with the diffusive nature of glioblastoma tumors. GBM tumor cells can migrate far beyond the visible boundaries of the tumor and will result in a recurring tumor if not killed or removed. Since medical images are the only readily available information about the tumor, we aim to improve mathematical models of tumor growth to better estimate the missing information. Particularly, we investigate the effect of random variation in tumor cell behavior (anisotropy) using stochastic parameterizations of an established proliferation-diffusion model of tumor growth. To evaluate the performance of our mathematical model, we use MR images from an animal model consisting of Murine GL261 tumors implanted in immunocompetent mice, which provides consistency in tumor initiation and location, immune response, genetic variation, and treatment. Compared to non-stochastic simulations, stochastic simulations showed improved volume accuracy when proliferation variability was high, but diffusion variability was found to only marginally affect tumor volume estimates. Neither proliferation nor diffusion variability significantly affected the spatial distribution accuracy of the simulations. While certain cases of stochastic parameterizations improved volume accuracy, they failed to significantly improve simulation accuracy overall. Both the non-stochastic and stochastic simulations failed to achieve over 75% spatial distribution accuracy, suggesting that the underlying structure of the model fails to capture one or more biological processes that affect tumor growth. Two biological features that are candidates for further investigation are angiogenesis and anisotropy resulting from differences between white and gray matter. Time-dependent proliferation and diffusion terms could be introduced to model angiogenesis, and diffusion weighed imaging (DTI) could be used to differentiate between white and gray matter, which might allow for improved estimates brain anisotropy.

Contributors

Agent

Created

Date Created
  • 2016-05

137637-Thumbnail Image.png

REVIEW OF THE AXELROD MODEL

Description

The Axelrod Model is an agent-based adaptive model. The Axelrod Model shows the eects of a mechanism of convergent social inuence. Do local conver- gences generate global polarization ? Will

The Axelrod Model is an agent-based adaptive model. The Axelrod Model shows the eects of a mechanism of convergent social inuence. Do local conver- gences generate global polarization ? Will it be possible for all dierences between individuals in a population comprised of neighbors to disappear ? There are many mechanisms to approach this issue ; the Axelrod Model is one of them.

Contributors

Agent

Created

Date Created
  • 2013-05

151673-Thumbnail Image.png

Decision analysis for comparative life cycle assessment

Description

Life Cycle Assessment (LCA) quantifies environmental impacts of products in raw material extraction, processing, manufacturing, distribution, use and final disposal. The findings of an LCA can be used to improve

Life Cycle Assessment (LCA) quantifies environmental impacts of products in raw material extraction, processing, manufacturing, distribution, use and final disposal. The findings of an LCA can be used to improve industry practices, to aid in product development, and guide public policy. Unfortunately, existing approaches to LCA are unreliable in the cases of emerging technologies, where data is unavailable and rapid technological advances outstrip environmental knowledge. Previous studies have demonstrated several shortcomings to existing practices, including the masking of environmental impacts, the difficulty of selecting appropriate weight sets for multi-stakeholder problems, and difficulties in exploration of variability and uncertainty. In particular, there is an acute need for decision-driven interpretation methods that can guide decision makers towards making balanced, environmentally sound decisions in instances of high uncertainty. We propose the first major methodological innovation in LCA since early establishment of LCA as the analytical perspective of choice in problems of environmental management. We propose to couple stochastic multi-criteria decision analytic tools with existing approaches to inventory building and characterization to create a robust approach to comparative technology assessment in the context of high uncertainty, rapid technological change, and evolving stakeholder values. Namely, this study introduces a novel method known as Stochastic Multi-attribute Analysis for Life Cycle Impact Assessment (SMAA-LCIA) that uses internal normalization by means of outranking and exploration of feasible weight spaces.

Contributors

Agent

Created

Date Created
  • 2013

154985-Thumbnail Image.png

Stochastic multiscale modeling and statistical characterization of complex polymer matrix composites

Description

There are many applications for polymer matrix composite materials in a variety of different industries, but designing and modeling with these materials remains a challenge due to the intricate architecture

There are many applications for polymer matrix composite materials in a variety of different industries, but designing and modeling with these materials remains a challenge due to the intricate architecture and damage modes. Multiscale modeling techniques of composite structures subjected to complex loadings are needed in order to address the scale-dependent behavior and failure. The rate dependency and nonlinearity of polymer matrix composite materials further complicates the modeling. Additionally, variability in the material constituents plays an important role in the material behavior and damage. The systematic consideration of uncertainties is as important as having the appropriate structural model, especially during model validation where the total error between physical observation and model prediction must be characterized. It is necessary to quantify the effects of uncertainties at every length scale in order to fully understand their impact on the structural response. Material variability may include variations in fiber volume fraction, fiber dimensions, fiber waviness, pure resin pockets, and void distributions. Therefore, a stochastic modeling framework with scale dependent constitutive laws and an appropriate failure theory is required to simulate the behavior and failure of polymer matrix composite structures subjected to complex loadings. Additionally, the variations in environmental conditions for aerospace applications and the effect of these conditions on the polymer matrix composite material need to be considered. The research presented in this dissertation provides the framework for stochastic multiscale modeling of composites and the characterization data needed to determine the effect of different environmental conditions on the material properties. The developed models extend sectional micromechanics techniques by incorporating 3D progressive damage theories and multiscale failure criteria. The mechanical testing of composites under various environmental conditions demonstrates the degrading effect these conditions have on the elastic and failure properties of the material. The methodologies presented in this research represent substantial progress toward understanding the failure and effect of variability for complex polymer matrix composites.

Contributors

Agent

Created

Date Created
  • 2016

151097-Thumbnail Image.png

Renewable energy penetration planning for remote power grid

Description

Power generation in remote isolated places is a tough problem. Presently, a common source for remote generation is diesel. However, diesel generation is costly and environmental unfriendly. It is promising

Power generation in remote isolated places is a tough problem. Presently, a common source for remote generation is diesel. However, diesel generation is costly and environmental unfriendly. It is promising to replace the diesel generation with some clean and economical generation sources. The concept of renewable generation offers a solution to remote generation. This thesis focuses on evaluation of renewable generation penetration in the remote isolated grid. A small town named Coober Pedy in South Australia is set as an example. The first task is to build the stochastic models of solar irradiation and wind speed based on the local historical data. With the stochastic models, generation fluctuations and generation planning are further discussed. Fluctuation analysis gives an evaluation of storage unit size and costs. Generation planning aims at finding the relationships between penetration level and costs under constraint of energy sufficiency. The results of this study provide the best penetration level that makes the minimum energy costs. In the case of Coober Pedy, cases of wind and photovoltaic penetrations are studied. The additional renewable sources and suspended diesel generation change the electricity costs. Results show that in remote isolated grid, compared to diesel generation, renewable generation can lower the energy costs.

Contributors

Agent

Created

Date Created
  • 2012

152012-Thumbnail Image.png

Managing solar uncertainty in neighboring systems with stochastic unit commitment

Description

As renewable energy becomes more prevalent in transmission and distribution systems, it is vital to understand the uncertainty and variability that accompany these resources. Microgrids have the potential to mitigate

As renewable energy becomes more prevalent in transmission and distribution systems, it is vital to understand the uncertainty and variability that accompany these resources. Microgrids have the potential to mitigate the effects of resource uncertainty. With the ability to exist in either an islanded mode or maintain connections with the main-grid, a microgrid can increase reliability, defer T&D; infrastructure and effectively utilize demand response. This study presents a co-optimization framework for a microgrid with solar photovoltaic generation, emergency generation, and transmission switching. Today unit commitment models ensure reliability with deterministic criteria, which are either insufficient to ensure reliability or can degrade economic efficiency for a microgrid that uses a large penetration of variable renewable resources. A stochastic mixed integer linear program for day-ahead unit commitment is proposed to account for uncertainty inherent in PV generation. The model incorporates the ability to trade energy and ancillary services with the main-grid, including the designation of firm and non-firm imports, which captures the ability to allow for reserve sharing between the two systems. In order to manage the computational complexities, a Benders' decomposition approach is utilized. The commitment schedule was validated with solar scenario analysis, i.e., Monte-Carlo simulations are conducted to test the proposed dispatch solution. For this test case, there were few deviations to power imports, 0.007% of solar was curtailed, no load shedding occurred in the main-grid, and 1.70% load shedding occurred in the microgrid.

Contributors

Agent

Created

Date Created
  • 2013