Matching Items (3)
Filtering by

Clear all filters

157062-Thumbnail Image.png
Description
Synthetic manipulation of chromatin dynamics has applications for medicine, agriculture, and biotechnology. However, progress in this area requires the identification of design rules for engineering chromatin systems. In this thesis, I discuss research that has elucidated the intrinsic properties of histone binding proteins (HBP), and apply this knowledge to engineer

Synthetic manipulation of chromatin dynamics has applications for medicine, agriculture, and biotechnology. However, progress in this area requires the identification of design rules for engineering chromatin systems. In this thesis, I discuss research that has elucidated the intrinsic properties of histone binding proteins (HBP), and apply this knowledge to engineer novel chromatin binding effectors. Results from the experiments described herein demonstrate that the histone binding domain from chromobox protein homolog 8 (CBX8) is portable and can be customized to alter its endogenous function. First, I developed an assay to identify engineered fusion proteins that bind histone post translational modifications (PTMs) in vitro and regulate genes near the same histone PTMs in living cells. This assay will be useful for assaying the function of synthetic histone PTM-binding actuators and probes. Next, I investigated the activity of a novel, dual histone PTM binding domain regulator called Pc2TF. I characterized Pc2TF in vitro and in cells and show it has enhanced binding and transcriptional activation compared to a single binding domain fusion called Polycomb Transcription Factor (PcTF). These results indicate that valency can be used to tune the activity of synthetic histone-binding transcriptional regulators. Then, I report the delivery of PcTF fused to a cell penetrating peptide (CPP) TAT, called CP-PcTF. I treated 2D U-2 OS bone cancer cells with CP-PcTF, followed by RNA sequencing to identify genes regulated by CP-PcTF. I also showed that 3D spheroids treated with CP-PcTF show delayed growth. This preliminary work demonstrated that an epigenetic effector fused to a CPP can enable entry and regulation of genes in U-2 OS cells through DNA independent interactions. Finally, I described and validated a new screening method that combines the versatility of in vitro transcription and translation (IVTT) expressed protein coupled with the histone tail microarrays. Using Pc2TF as an example, I demonstrated that this assay is capable of determining binding and specificity of a synthetic HBP. I conclude by outlining future work toward engineering HBPs using techniques such as directed evolution and rational design. In conclusion, this work outlines a foundation to engineer and deliver synthetic chromatin effectors.
ContributorsTekel, Stefan (Author) / Haynes, Karmella (Thesis advisor) / Mills, Jeremy (Committee member) / Caplan, Michael (Committee member) / Brafman, David (Committee member) / Arizona State University (Publisher)
Created2019
154922-Thumbnail Image.png
Description
Gene delivery is a broadly applicable tool that has applications in gene therapy, production of therapeutic proteins, and as a study tool to understand biological pathways. However, for successful gene delivery, the gene and its carrier must bypass or traverse a number of formidable obstacles before successfully entering the cell’s

Gene delivery is a broadly applicable tool that has applications in gene therapy, production of therapeutic proteins, and as a study tool to understand biological pathways. However, for successful gene delivery, the gene and its carrier must bypass or traverse a number of formidable obstacles before successfully entering the cell’s nucleus where the host cell’s machinery can be utilized to express a protein encoded by the gene of interest. The vast majority of work in the gene delivery field focuses on overcoming these barriers by creative synthesis of nanoparticle delivery vehicles or conjugation of targeting moieties to the nucleic acid or delivery vehicle, but little work focuses on modifying the target cell’s behavior to make it more amenable to transfection.

In this work, a number of kinase enzymes have been identified by inhibition to be targets for enhancing polymer-mediated transgene expression (chapter 2), including the lead target which appears to affect intracellular trafficking of delivered nucleic acid cargo. The subsequent sections (chapters 3 and 4) of this work focus on targeting epigenetic modifying enzymes to enhance polymer-mediated transgene expression, and a number of candidate enzymes have been identified. Some mechanistic evaluation of these targets have been carried out and discussion of ongoing experiments and future directions to better understand the mechanistic descriptions behind the phenomena are discussed. The overall goal is to enhance non-viral (polymer-mediated) transgene expression by modulating cellular behavior for general gene delivery applications.
ContributorsChristensen, Matthew David (Author) / Rege, Kaushal (Thesis advisor) / Nielsen, David (Committee member) / Green, Matthew (Committee member) / Haynes, Karmella (Committee member) / Muthuswamy, Jitendran (Committee member) / Arizona State University (Publisher)
Created2016
135297-Thumbnail Image.png
Description
Current research into live-cell dynamics, particularly those relating to chromatin structure and remodeling, are limited. The tools that are used to detect state changes in chromatin, such as Chromatin Immunoprecipitation and qPCR, require that the cell be killed off. This limits the ability of researchers to pinpoint changes in live

Current research into live-cell dynamics, particularly those relating to chromatin structure and remodeling, are limited. The tools that are used to detect state changes in chromatin, such as Chromatin Immunoprecipitation and qPCR, require that the cell be killed off. This limits the ability of researchers to pinpoint changes in live cells over a longer period of time. As such, there is a need for a live-cell sensor that can detect chromatin state changes. The Chromometer is a transgenic chromatin state sensor designed to better understand human cell fate and the chromatin changes that occur. HOXD11.12, a DNA sequence that attracts repressive Polycomb group (PCG) proteins, was placed upstream of a core promoter-driven fluorescent reporter (AmCyan fluorescent protein, CFP) to link chromatin repression to a CFP signal. The transgene was stably inserted at an ectopic site in U2-OS (osteosarcoma) cells. Expression of CFP should reflect the epigenetic state at the HOXD locus, where several genes are regulated by Polycomb to control cell differentiation. U2-OS cells were transfected with the transgene and grown under selective pressure. Twelve colonies were identified as having integrated parts from the transgene into their genomes. PCR testing verified 2 cell lines that contain the complete transgene. Flow cytometry indicated mono-modal and bimodal populations in all transgenic cell colonies. Further research must be done to determine the effectiveness of this device as a sensor for live cell state change detection.
ContributorsBarclay, David (Co-author) / Simper, Jan (Co-author) / Haynes, Karmella (Thesis director) / Brafman, David (Committee member) / School of Life Sciences (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05