Matching Items (2)
Filtering by

Clear all filters

135275-Thumbnail Image.png
Description
In real world applications, materials undergo a simultaneous combination of tension, compression, and torsion as a result of high velocity impact. The split Hopkinson pressure bar (SHPB) is an effective tool for analyzing stress-strain response of materials at high strain rates but currently little can be done to produce a

In real world applications, materials undergo a simultaneous combination of tension, compression, and torsion as a result of high velocity impact. The split Hopkinson pressure bar (SHPB) is an effective tool for analyzing stress-strain response of materials at high strain rates but currently little can be done to produce a synchronized combination of these varying impacts. This research focuses on fabricating a flange which will be mounted on the incident bar of a SHPB and struck perpendicularly by a pneumatically driven striker thus allowing for torsion without interfering with the simultaneous compression or tension. Analytical calculations are done to determine size specifications of the flange to protect against yielding or failure. Based on these results and other design considerations, the flange and a complementary incident bar are created. Timing can then be established such that the waves impact the specimen at the same time causing simultaneous loading of a specimen. This thesis allows research at Arizona State University to individually incorporate all uniaxial deformation modes (tension, compression, and torsion) at high strain rates as well as combining either of the first two modes with torsion. Introduction of torsion will expand the testing capabilities of the SHPB at ASU and allow for more in depth analysis of the mechanical behavior of materials under impact loading. Combining torsion with tension or compression will promote analysis of a material's adherence to the Von Mises failure criterion. This greater understanding of material behavior can be implemented into models and simulations thereby improving the accuracy with which engineers can design new structures.
ContributorsVotroubek, Edward Daniel (Author) / Solanki, Kiran (Thesis director) / Oswald, Jay (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
147679-Thumbnail Image.png
Description

Fatigue damage accumulation under multiaxial loading conditions is an important practical problem for which there is a need to collect additional experimental data to calibrate and validate models. In this work, a sample with a special geometry capable of producing biaxial stresses while undergoing uniaxial load was fabricated and tested

Fatigue damage accumulation under multiaxial loading conditions is an important practical problem for which there is a need to collect additional experimental data to calibrate and validate models. In this work, a sample with a special geometry capable of producing biaxial stresses while undergoing uniaxial load was fabricated and tested successfully and used, along with standard dogbone samples, to monitor the evolution of surface roughness development under cyclic loading using optical microscopy. In addition, a Michelson interferometer was successfully designed, built and tested that can be used to monitor surface roughness for lower levels of load than those used in this work. Results of testing and characterization in 2024-T3 samples tested at a maximum stress slightly below their yield strength and load ratio ~ 0.1 indicate that most of the surface roughness development under cyclic loads occurs on the second half of the fatigue, with the bulk of it close to failure. However, samples with load axes perpendicular to the rolling direction showed earlier development of roughness, which correlated with shorter fatigue lives and the expected anisotropy of strength in the material.

ContributorsMiller, Ryley J (Author) / Peralta, Pedro (Thesis director) / Solanki, Kiran (Committee member) / School of Earth and Space Exploration (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05