Matching Items (6)
Filtering by

Clear all filters

151077-Thumbnail Image.png
Description
Modern primate diet is well-studied because of its considerable influence on multiple aspects of morphology, including the shape of the facial skeleton and teeth. It is well-established that differences in craniofacial form influence feeding abilities by altering the nature of bite force production. Tooth morphology, likewise, has been shown to

Modern primate diet is well-studied because of its considerable influence on multiple aspects of morphology, including the shape of the facial skeleton and teeth. It is well-established that differences in craniofacial form influence feeding abilities by altering the nature of bite force production. Tooth morphology, likewise, has been shown to vary with diet across primates, particularly in the details of occlusal form. It has also been suggested that tooth form (e.g., tooth root size and shape and crown size) reflects, in part, the demands of resisting the stresses generated during feeding. However, while they are central to our efforts to infer diet in past species, the relationships between bite force production, craniofacial morphology and tooth form are not well-established. The current study is separated into two parts. In Part I, the hypothesis that crown size and root surface area are adapted to resist masticatory stress is evaluated by testing whether these features show correlated variation along the tooth row in a taxonomically diverse sample of primates. To further explore the adaptive nature of this correlation, pair-wise comparisons between primates with mechanically resistant diets and closely-related species consuming less resistant foods are performed. If crown size and root surface area covary along the tooth row, past research suggests they may be related to bite force. To test this hypothesis, Part II examines the variation of these dental characteristics in comparison to theoretically-derived bite force patterns along the tooth row. Results suggest that patterns of maximum bite force magnitude along the tooth row are variable both within and between species, underscoring the importance of individual craniofacial variation on masticatory force production. Furthermore, it is suggested that some adaptations traditionally associated with high bite force production (i.e., facial orthognathy) may increase anterior biting force at the expense of posterior biting force. Taken together, results from the current study reveal that both tooth root and crown size vary in conjunction with the mechanical properties of diet and with bite force patterns along the tooth row in anthropoids.
ContributorsLucas, Lynn (Author) / Spencer, Mark (Thesis advisor) / Schwartz, Gary (Committee member) / Kimbel, William (Committee member) / Arizona State University (Publisher)
Created2012
157340-Thumbnail Image.png
Description
As the junction between the head and the trunk, the neck functions in providing head stability during behaviors like feeding to facilitating head mobility during behavior like grooming and predator vigilance. Despite its importance to these vital behaviors, its form and function remain poorly understood. Fossil hominin cervical vertebrae preserve

As the junction between the head and the trunk, the neck functions in providing head stability during behaviors like feeding to facilitating head mobility during behavior like grooming and predator vigilance. Despite its importance to these vital behaviors, its form and function remain poorly understood. Fossil hominin cervical vertebrae preserve a striking diversity in form despite the commitment to orthograde bipedality. Do these differences in cervical vertebral form correspond to functional variations among our recent ancestors? This dissertation attempts to understand 1) how does the neck function in head stability and mobility 2) how do these functions relate to cervical vertebral form. Kinematic and passive range of motion studies were conducted in several species of primate to obtain measures of function which were subsequently related to skeletal form.

Results show that cervical vertebral morphology does not significantly covary with differences in joint mobility. Rather, they implicate the critical role of ligaments and muscles in facilitating head mobility. Results of the kinematics study show that the neck plays a role in maintaining head stability during locomotion. However, the kinematic data do not significantly correlate with morphological variation among primate species. Given the negative results of the extant morphological analyses, it is difficult to apply them to the fossil record. As such, the functional significance of the disparate morphologies found in the hominin fossil record remain ambiguous.
ContributorsGrider-Potter, Neysa (Author) / Kimbel, William (Thesis advisor) / Raichlen, David (Committee member) / Schwartz, Gary (Committee member) / Ward, Carol (Committee member) / Arizona State University (Publisher)
Created2019
154568-Thumbnail Image.png
Description
Early weaning, slow somatic and dental growth, and late age at reproduction are all part of a suite of energetic trade-offs that have shaped human evolution. A similar suite of energetic trade-offs has shaped the evolution of the indriid-palaeopropithecid clade, though members of this clade exhibit extremely fast dental development

Early weaning, slow somatic and dental growth, and late age at reproduction are all part of a suite of energetic trade-offs that have shaped human evolution. A similar suite of energetic trade-offs has shaped the evolution of the indriid-palaeopropithecid clade, though members of this clade exhibit extremely fast dental development and nearly vestigial deciduous teeth. The development and functional occlusion of the primary postcanine dentition (i.e., deciduous premolars and molars) coincides with several life history parameters in great apes and indriids. This dissertation explored great ape dental macrowear, molar development in indriids, and molar size in lemurs with a broader goal of improving reconstructions of life history profiles in extinct primates. To this aim, macrowear and dental development were analyzed in apes and lemurs, respectively. Occlusal casts (six great ape species; N=278) were scanned to track mandibular fourth deciduous premolar (dp4) macrowear. Utilizing dental topographic analyses, changes in occlusal gradient and terrain were quantified. A subset of the great ape data (four species; n=199) was analyzed to test if differences in dp4 wear correlate with age at weaning. Using dental histology, molar development was reconstructed for Indri indri (n=1) and Avahi laniger (n=1). Life history and molar size data were collected from the literature. The results of this dissertation demonstrate that most great apes exhibited evidence of topographic maintenance, suggesting dp4s wear in a manner that maintain functional efficiency during growth and development; however, the manner in which maintenance is achieved (e.g., preservation of relief or complexity) is species specific. Dp4 macrowear is not correlated with age at weaning in great apes and is probably unreliable to reconstruct age at weaning in hominins. The pace of molar development in members of the indriid- palaeopropithecid clade did not correlate with body or brain size, an association present in several other primates. Associations of molar size with age at weaning suggest that expanding other developmental models (e.g., the inhibitory cascade) to life history is worth consideration. The broad variation in macrowear, dental development, and size highlights how the primary dentition may correlate with different life history parameters depending on the species and ecological setting, an important consideration when using teeth to reconstruct life history profiles.
ContributorsCatlett, Kierstin Kay (Author) / Schwartz, Gary (Thesis advisor) / Barton, Michael (Committee member) / Godfrey, Laurie (Committee member) / Reed, Kaye (Committee member) / Arizona State University (Publisher)
Created2016
Description
Craniofacial morphology in primates can vary on the basis of their diet because foods are often disparate in the amount and duration of force required to break them down. Therefore diet has the potential to exercise considerable selective pressure on the morphology of the masticatory system. The zygomatic arch

Craniofacial morphology in primates can vary on the basis of their diet because foods are often disparate in the amount and duration of force required to break them down. Therefore diet has the potential to exercise considerable selective pressure on the morphology of the masticatory system. The zygomatic arch is a known site of relatively high masticatory strain and yet the relationship between arch form and load type is relatively unknown in primates. While the relative position and robusticity of the arch is considered a key indicator of craniofacial adaptations to a mechanically challenging diet, and central to efforts to infer diet in past species, the relationships between morphology and diet type in this feature are not well established.

This study tested hypotheses using two diet categorizations: total consumption percent and food material properties (FMPs). The first hypothesis that cortical bone area (CA) and section moduli (bone strength) are positively correlated with masticatory loading tests whether CA and moduli measures were greatest anteriorly and decreased posteriorly along the arch. The results found these measures adhered to this predicted pattern in the majority of taxa. The second hypothesis examines sutural complexity in the zygomaticotemporal suture as a function of dietary loading differences by calculating fractal dimensions as indices of complexity. No predictable pattern was found linking sutural complexity and diet in this primate sample, though hard object consumers possessed the most complex sutures. Lastly, cross-sectional geometric properties were measured to investigate whether bending and torsional resistance and cross-sectional shape are related to differences in masticatory loading. The highest measures of mechanical resistance tracked with areas of greatest strain in the majority of taxa. Cross-sectional shape differences do appear to reflect dietary differences. FMPs were not correlated with cross-sectional variables, however pairwise comparisons suggest taxa that ingest foods of greater stiffness experience relatively larger measures of bending and torsional resistance. The current study reveals that internal and external morphological factors vary across the arch and in conjunction with diet in primates. These findings underscore the importance of incorporating these mechanical differences in models of zygomatic arch mechanical behavior and primate craniofacial biomechanics.
ContributorsEdmonds, Hallie Margaret (Author) / Reed, Kaye (Thesis advisor) / Schwartz, Gary (Committee member) / Vinyard, Chris (Committee member) / Arizona State University (Publisher)
Created2017
135275-Thumbnail Image.png
Description
In real world applications, materials undergo a simultaneous combination of tension, compression, and torsion as a result of high velocity impact. The split Hopkinson pressure bar (SHPB) is an effective tool for analyzing stress-strain response of materials at high strain rates but currently little can be done to produce a

In real world applications, materials undergo a simultaneous combination of tension, compression, and torsion as a result of high velocity impact. The split Hopkinson pressure bar (SHPB) is an effective tool for analyzing stress-strain response of materials at high strain rates but currently little can be done to produce a synchronized combination of these varying impacts. This research focuses on fabricating a flange which will be mounted on the incident bar of a SHPB and struck perpendicularly by a pneumatically driven striker thus allowing for torsion without interfering with the simultaneous compression or tension. Analytical calculations are done to determine size specifications of the flange to protect against yielding or failure. Based on these results and other design considerations, the flange and a complementary incident bar are created. Timing can then be established such that the waves impact the specimen at the same time causing simultaneous loading of a specimen. This thesis allows research at Arizona State University to individually incorporate all uniaxial deformation modes (tension, compression, and torsion) at high strain rates as well as combining either of the first two modes with torsion. Introduction of torsion will expand the testing capabilities of the SHPB at ASU and allow for more in depth analysis of the mechanical behavior of materials under impact loading. Combining torsion with tension or compression will promote analysis of a material's adherence to the Von Mises failure criterion. This greater understanding of material behavior can be implemented into models and simulations thereby improving the accuracy with which engineers can design new structures.
ContributorsVotroubek, Edward Daniel (Author) / Solanki, Kiran (Thesis director) / Oswald, Jay (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
Crown Cercopithecoidea (Old World monkeys) share bilophodont molars characterized by four cusps arranged into two transversely-aligned pairs connected by crests or “loph(id)s”. This derived dental configuration provides a flexible template that has been modified in different lineages of Old World monkeys to meet the mechanical demands of food-processing in species

Crown Cercopithecoidea (Old World monkeys) share bilophodont molars characterized by four cusps arranged into two transversely-aligned pairs connected by crests or “loph(id)s”. This derived dental configuration provides a flexible template that has been modified in different lineages of Old World monkeys to meet the mechanical demands of food-processing in species with diverse and varied diets. This molar Bauplan evolved in the early stages of Old World monkey evolution, and one consequence of these morphological changes in occlusal morphology relative to apes and more basal catarrhines is a set of distinct patterns of tooth wear. Adaptive explanations for the origins of bilophodonty have emphasized dietary reconstructions but have not explored the implications of molar crown reorganization on the interaction between tooth wear and tooth function. This study combines description of new fossil material of early Miocene stem cercopithecoids and 3D dental topographic analyses of cross-sectional M2 wear series of extant catarrhines (n=511, 24 species) and Miocene fossil catarhines (n=81, 7 genera) to explore how functional aspects of molar topography are altered by tooth wear, to test whether the acquisition of bilophodont molars resulted in distinct occlusal topographies and patterns of topographic change with wear among Old World monkeys, and to determine whether differences in patterns of topographic change with wear reflect differences in diet.Descriptions of new fossils of the early Miocene stem cercopithecoid Noropithecus bulukensis confirm its generic distinction from Victoriapithecus macinnesi and highlight the dental metric and morphological variation that complicates identification of isolated teeth. Results of dental topographic analyses show that wear-mediated patterns of change in functional topographic metrics do not reflect broad dietary differences in extant catarrhines. While topographic features of unworn molars exhibit a phylogenetic signal, the pattern of wear-mediated topographic change does not. Molar topography of victoriapithecids is similar to extant cercopithecids with frugivorous and hard-object feeding diets, supporting previous dietary reconstructions. Victoriapithecid molar occlusal surfaces exhibit less complexity, less curvature, and higher relief than proconsulids prior to heavy wear stages. They are not distinct from occlusal topographies of small-bodied non-cercopithecoid catarrhines at any wear stage. Overall, these results suggest that the acquisition of bilophodont molar morphology in early and middle Miocene stem cercopithecoids was not associated with a shift in occlusal topography relative to more basal catarrhines. Rather, it is among proconsulids that shifts toward more complex, higher curvature occlusal surfaces are found.
ContributorsLocke, Ellis (Author) / Reed, Kaye (Thesis advisor) / Schwartz, Gary (Committee member) / Kelley, Jay (Committee member) / Arizona State University (Publisher)
Created2021