Matching Items (471)
Filtering by

Clear all filters

ContributorsDaval, Charles (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-26
152521-Thumbnail Image.png
DescriptionThe purpose of this project is to explore the influence of folk music in guitar compositions by Manuel Ponce from 1923 to 1932. It focuses on his Tres canciones populares mexicanas and Tropico and Rumba.
ContributorsGarcia Santos, Arnoldo (Author) / Koonce, Frank (Thesis advisor) / Rogers, Rodney (Committee member) / Rotaru, Catalin (Committee member) / Arizona State University (Publisher)
Created2014
ContributorsKotronakis, Dimitris (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-01
ContributorsDavin, Colin (Performer) / ASU Library. Music Library (Publisher)
Created2018-10-05
155731-Thumbnail Image.png
Description
Urbanization and woody plant encroachment, with subsequent brush management, are two significant land cover changes that are represented in the southwestern United States. Urban areas continue to grow, and rangelands are undergoing vegetation conversions, either purposely through various rangeland management techniques, or by accident, through inadvertent effects of climate and

Urbanization and woody plant encroachment, with subsequent brush management, are two significant land cover changes that are represented in the southwestern United States. Urban areas continue to grow, and rangelands are undergoing vegetation conversions, either purposely through various rangeland management techniques, or by accident, through inadvertent effects of climate and management. This thesis investigates how areas undergoing land cover conversions in a semiarid region, through urbanization or rangeland management, influences energy, water and carbon fluxes. Specifically, the following scientific questions are addressed: (1) what is the impact of different urban land cover types in Phoenix, AZ on energy and water fluxes?, (2) how does the land cover heterogeneity influence energy, water, and carbon fluxes in a semiarid rangeland undergoing woody plant encroachment?, and (3) what is the impact of brush management on energy, water, and carbon fluxes?

The eddy covariance technique is well established to measure energy, water, and carbon fluxes and is used to quantify and compare flux measurements over different land surfaces. Results reveal that in an urban setting, paved surfaces exhibit the largest sensible and lowest latent heat fluxes in an urban environment, while a mesic landscape exhibits the largest latent heat fluxes, due to heavy irrigation. Irrigation impacts flux sensitivity to precipitation input, where latent heat fluxes increase with precipitation in xeric and parking lot landscapes, but do not impact the mesic system. In a semiarid managed rangeland, past management strategies and disturbance histories impact vegetation distribution, particularly the distribution of mesquite trees. At the site with less mesquite coverage, evapotranspiration (ET) is greater, due to greater grass cover. Both sites are generally net sinks of CO2, which is largely dependent on moisture availability, while the site with greater mesquite coverage has more respiration and generally greater gross ecosystem production (GEP). Initial impacts of brush management reveal ET and GEP decrease, due to the absence of mesquite trees. However the impact appears to be minimal by the end of the productive season. Overall, this dissertation advances the understanding of land cover change impacts on surface energy, water, and carbon fluxes in semiarid ecosystems.
ContributorsTempleton, Nicole Pierini (Author) / Vivoni, Enrique R (Thesis advisor) / Archer, Steven R (Committee member) / Mascaro, Giuseppe (Committee member) / Scott, Russell L. (Committee member) / Wang, Zhi-Hua (Committee member) / Arizona State University (Publisher)
Created2017
149442-Thumbnail Image.png
Description

Urban ecosystems cover less than 3% of the Earth's land surface, yet more than half of the human population lives in urban areas. The process of urbanization stresses biodiversity and other ecosystem functions within and far beyond the city. To understand the mechanisms underlying observed changes in biodiversity patterns, several

Urban ecosystems cover less than 3% of the Earth's land surface, yet more than half of the human population lives in urban areas. The process of urbanization stresses biodiversity and other ecosystem functions within and far beyond the city. To understand the mechanisms underlying observed changes in biodiversity patterns, several observational and experimental studies were performed in the metropolitan area of Phoenix, Arizona, and the surrounding Sonoran Desert. The first study was comprised of seven years of arthropod monitoring using pitfall traps in common urban land-use types. This study revealed differences in community structure, diversity and abundance over time and between urban and wildland habitats. Urban habitats with high productivity had higher abundances of arthropods, but lower diversity compared to wildland habitats. Arthropod abundance in less-productive urban habitats was positively correlated with precipitation, but abundance in high-productivity urban habitats was completely decoupled from annual fluctuations in precipitation. This study showed the buffering capacity and the habitat heterogeneity of urban areas. To test the mechanisms controlling community diversity and structure in urban areas, a major field experiment was initiated. Productivity of the native shrub Encelia farinosa and bird predation of associated arthropods were manipulated to test whether bottom-up or top-down forces were more important in urban habitats compared to wildland habitats. Abundance, richness and similarity were monitored, revealing clear differences between urban and wildland habitats. An unusually cold and dry first season had a negative effect on plant growth and arthropod abundance. Plants in urban habitats were relatively unaffected by the low temperature. An increase in arthropod abundance with water availability indicated bottom-up forces in wildland habitats, whereas results from bird exclusions suggested that bird predation may not be as prominent in cities as previously thought. In contrast to the pitfall study, arthropod abundance was lower in urban habitats. A second field experiment testing the sheltering effect of urban structures demonstrated that reduced wind speed is an important factor facilitating plant growth in urban areas. A mathematical model incorporating wind, water and temperature demonstrated that urban habitats may be more robust than wildland habitats, supporting the empirical results.

ContributorsBang, Christofer (Author) / Faeth, Stanley H. (Thesis advisor) / Sabo, John L. (Thesis advisor) / Grimm, Nancy (Committee member) / Anderies, J. Marty (Committee member) / Warren, Paige S. (Committee member) / Arizona State University (Publisher)
Created2010
149520-Thumbnail Image.png
Description

General ecological thought pertaining to plant biology, conservation, and urban areas has rested on two potentially contradictory underlying assumptions. The first is that non-native plants can spread easily from human developments to “pristine” areas. The second is that native plants cannot disperse through developed areas. Both assume anthropogenic changes to

General ecological thought pertaining to plant biology, conservation, and urban areas has rested on two potentially contradictory underlying assumptions. The first is that non-native plants can spread easily from human developments to “pristine” areas. The second is that native plants cannot disperse through developed areas. Both assume anthropogenic changes to ecosystems create conditions that favor non-native plants and hinder native species. However, it is just as likely that anthropogenic alterations of habitats will favor certain groups of plant species with similar functional traits, whether native or not. Migration of plants can be divided into the following stages: dispersal, germination, establishment, reproduction and spread. Functional traits of species determine which are most successful at each of the stages of invasion or range enlargement. I studied the traits that allow both native and non-native plant species to disperse into freeway corridors, germinate, establish, reproduce, and then disperse along those corridors in Phoenix, Arizona. Field methods included seed bank sample collection and germination, vegetation surveys, and seed trapping. I also evaluated concentrations of plant-available nitrate as a result of localized nitrogen deposition. While many plant species found on the roadsides are either landscape varieties or typical weedy species, some uncommon native species and unexpected non-native species were also encountered. Maintenance regimes greatly influence the amount of vegetative cover and species composition along roadsides. Understanding which traits permit success at various stages of the invasion process indicates whether it is native, non-native, or species with particular traits that are likely to move through the city and establish in the desert. In a related case study conducted in Victoria, Australia, transportation professionals and ecologists were surveyed regarding preferences for roadside landscape design. Roadside design and maintenance projects are typically influenced by different groups of transportation professionals at various stages in a linear project cycle. Landscape architects and design professionals have distinct preferences and priorities compared to other transportation professionals and trained ecologists. The case study reveals the need for collaboration throughout the stages of design, construction and maintenance in order to efficiently manage roadsides for multiple priorities.

ContributorsGade, Kristin Joan (Author) / Kinzig, Ann P (Thesis advisor) / Grimm, Nancy (Committee member) / Perrings, Charles (Committee member) / Robbins, Paul (Committee member) / Stromberg, Juliet C. (Committee member) / Arizona State University (Publisher)
Created2010
149521-Thumbnail Image.png
Description

More than half of all accessible freshwater has been appropriated for human use, and a substantial portion of terrestrial ecosystems have been transformed by human action. These impacts are heaviest in urban ecosystems, where impervious surfaces increase runoff, water delivery and stormflows are managed heavily, and there are substantial anthropogenic

More than half of all accessible freshwater has been appropriated for human use, and a substantial portion of terrestrial ecosystems have been transformed by human action. These impacts are heaviest in urban ecosystems, where impervious surfaces increase runoff, water delivery and stormflows are managed heavily, and there are substantial anthropogenic sources of nitrogen (N). Urbanization also frequently results in creation of intentional novel ecosystems. These "designed" ecosystems are fashioned to fulfill particular needs of the residents, or ecosystem services. In the Phoenix, Arizona area, the augmentation and redistribution of water has resulted in numerous component ecosystems that are atypical for a desert environment. Because these systems combine N loading with the presence of water, they may be hot spots of biogeochemical activity. The research presented here illustrates the types of hydrological modifications typical of desert cities and documents the extent and distribution of common designed aquatic ecosystems in the Phoenix metropolitan area: artificial lakes and stormwater retention basins. While both ecosystems were designed for other purposes (recreation/aesthetics and flood abatement, respectively), they have the potential to provide the added ecosystem service of N removal via denitrification. However, denitrification in urban lakes is likely to be limited by the rate of diffusion of nitrate into the sediment. Retention basins export some nitrate to groundwater, but grassy basins have higher denitrification rates than xeriscaped ones, due to higher soil moisture and organic matter content. An economic valuation of environmental amenities demonstrates the importance of abundant vegetation, proximity to water, and lower summer temperatures throughout the region. These amenities all may be provided by designed, water-intensive ecosystems. Some ecosystems are specifically designed for multiple uses, but maximizing one ecosystem service often entails trade-offs with other services. Further investigation into the distribution, bundling, and tradeoffs among water-related ecosystem services shows that some types of services are constrained by the hydrogeomorphology of the area, while for others human engineering and the creation of designed ecosystems has enabled the delivery of hydrologic ecosystem services independent of natural constraints.

ContributorsLarson, Elisabeth Knight (Author) / Grimm, Nancy (Thesis advisor) / Hartnett, Hilairy E (Committee member) / Fisher, Stuart G. (Committee member) / Anderies, John M (Committee member) / Lohse, Kathleen A (Committee member) / Arizona State University (Publisher)
Created2010
ContributorsSanchez, Armand (Performer) / Nordstrom, Nathan (Performer) / Roubison, Ryan (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-13
ContributorsMiranda, Diego (Performer)
Created2018-04-06