Matching Items (844)
Filtering by

Clear all filters

151833-Thumbnail Image.png
Description
The end of the nineteenth century was an exhilarating and revolutionary era for the flute. This period is the Second Golden Age of the flute, when players and teachers associated with the Paris Conservatory developed what would be considered the birth of the modern flute school. In addition, the founding

The end of the nineteenth century was an exhilarating and revolutionary era for the flute. This period is the Second Golden Age of the flute, when players and teachers associated with the Paris Conservatory developed what would be considered the birth of the modern flute school. In addition, the founding in 1871 of the Société Nationale de Musique by Camille Saint-Saëns (1835-1921) and Romain Bussine (1830-1899) made possible the promotion of contemporary French composers. The founding of the Société des Instruments à Vent by Paul Taffanel (1844-1908) in 1879 also invigorated a new era of chamber music for wind instruments. Within this groundbreaking environment, Mélanie Hélène Bonis (pen name Mel Bonis) entered the Paris Conservatory in 1876, under the tutelage of César Franck (1822-1890). Many flutists are dismayed by the scarcity of repertoire for the instrument in the Romantic and post-Romantic traditions; they make up for this absence by borrowing the violin sonatas of Gabriel Fauré (1845-1924) and Franck. The flute and piano works of Mel Bonis help to fill this void with music composed originally for flute. Bonis was a prolific composer with over 300 works to her credit, but her works for flute and piano have not been researched or professionally recorded in the United States before the present study. Although virtually unknown today in the American flute community, Bonis's music received much acclaim from her contemporaries and deserves a prominent place in the flutist's repertoire. After a brief biographical introduction, this document examines Mel Bonis's musical style and describes in detail her six works for flute and piano while also offering performance suggestions.
ContributorsDaum, Jenna Elyse (Author) / Buck, Elizabeth (Thesis advisor) / Holbrook, Amy (Committee member) / Micklich, Albie (Committee member) / Schuring, Martin (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2013
ContributorsDaval, Charles (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-26
ContributorsMatthews, Eyona (Performer) / Yoo, Katie Jihye (Performer) / Roubison, Ryan (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-25
152521-Thumbnail Image.png
DescriptionThe purpose of this project is to explore the influence of folk music in guitar compositions by Manuel Ponce from 1923 to 1932. It focuses on his Tres canciones populares mexicanas and Tropico and Rumba.
ContributorsGarcia Santos, Arnoldo (Author) / Koonce, Frank (Thesis advisor) / Rogers, Rodney (Committee member) / Rotaru, Catalin (Committee member) / Arizona State University (Publisher)
Created2014
ContributorsHoeckley, Stephanie (Performer) / Lee, Juhyun (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-24
ContributorsMcClain, Katelyn (Performer) / Buringrud, Deanna (Contributor) / Lee, Juhyun (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-31
156002-Thumbnail Image.png
Description
Hardware-Assisted Security (HAS) is an emerging technology that addresses the shortcomings of software-based virtualized environment. There are two major weaknesses of software-based virtualization that HAS attempts to address - performance overhead and security issues. Performance overhead caused by software-based virtualization is due to the use of additional software layer (i.e.,

Hardware-Assisted Security (HAS) is an emerging technology that addresses the shortcomings of software-based virtualized environment. There are two major weaknesses of software-based virtualization that HAS attempts to address - performance overhead and security issues. Performance overhead caused by software-based virtualization is due to the use of additional software layer (i.e., hypervisor). Since the performance is highly related to efficiency of processing data and providing services, reducing performance overhead is one of the major concerns in data centers and enterprise networks. Software-based virtualization also imposes additional security issues in the virtualized environments. To resolve those issues, HAS is developed to offload security functions from application layer to a dedicated hardware, thereby achieving almost bare-metal performance and enhanced security. As a result, HAS gained

more popularity and the number of studies regarding efficiency of the technology is increasing.

However, there exists no attempt to our knowledge that provides a generic test mechanism that is universally applicable to all HAS devices. Preparing such a testbed for each specific HAS device is a time-consuming and costly task for hardware manufacturers and network administrators. Therefore, we try to address the demands of hardware vendors and researchers for a generic testbed that can evaluate both performance and security functions of the HAS-enabled systems.

In this thesis, the HAS device evaluation framework (HEF) is defined for hardware vendors, network administrators, and researchers to measure performance of the system with HAS devices. HEF provides a generic test environments for a given HAS device by providing generic test metrics and evaluation mechanisms. HEF is also designed to take user-defined test metrics and test cases to support various hardware. The framework performs the entire process in an automated fashion, and thus it requires no user intervention. Finally, the efficacy of HEF is demonstrated by performing a case study using Intel QuickAssist Technology (QAT) adapter, which is a dedicated PCI express device for cryptographic tasks.
ContributorsKyung, Sukwha (Author) / Ahn, Gail-Joon (Thesis advisor) / Doupe, Adam (Committee member) / Zhao, Ziming (Committee member) / Arizona State University (Publisher)
Created2017
ContributorsKotronakis, Dimitris (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-01
156685-Thumbnail Image.png
Description
Compartmentalizing access to content, be it websites accessed in a browser or documents and applications accessed outside the browser, is an established method for protecting information integrity [12, 19, 21, 60]. Compartmentalization solutions change the user experience, introduce performance overhead and provide varying degrees of security. Striking a balance between

Compartmentalizing access to content, be it websites accessed in a browser or documents and applications accessed outside the browser, is an established method for protecting information integrity [12, 19, 21, 60]. Compartmentalization solutions change the user experience, introduce performance overhead and provide varying degrees of security. Striking a balance between usability and security is not an easy task. If the usability aspects are neglected or sacrificed in favor of more security, the resulting solution would have a hard time being adopted by end-users. The usability is affected by factors including (1) the generality of the solution in supporting various applications, (2) the type of changes required, (3) the performance overhead introduced by the solution, and (4) how much the user experience is preserved. The security is affected by factors including (1) the attack surface of the compartmentalization mechanism, and (2) the security decisions offloaded to the user. This dissertation evaluates existing solutions based on the above factors and presents two novel compartmentalization solutions that are arguably more practical than their existing counterparts.

The first solution, called FlexICon, is an attractive alternative in the design space of compartmentalization solutions on the desktop. FlexICon allows for the creation of a large number of containers with small memory footprint and low disk overhead. This is achieved by using lightweight virtualization based on Linux namespaces. FlexICon uses two mechanisms to reduce user mistakes: 1) a trusted file dialog for selecting files for opening and launching it in the appropriate containers, and 2) a secure URL redirection mechanism that detects the user’s intent and opens the URL in the proper container. FlexICon also provides a language to specify the access constraints that should be enforced by various containers.

The second solution called Auto-FBI, deals with web-based attacks by creating multiple instances of the browser and providing mechanisms for switching between the browser instances. The prototype implementation for Firefox and Chrome uses system call interposition to control the browser’s network access. Auto-FBI can be ported to other platforms easily due to simple design and the ubiquity of system call interposition methods on all major desktop platforms.
ContributorsZohrevandi, Mohsen (Author) / Bazzi, Rida A (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Doupe, Adam (Committee member) / Zhao, Ming (Committee member) / Arizona State University (Publisher)
Created2018
ContributorsHur, Jiyoun (Performer) / Lee, Juhyun (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-01