Matching Items (478)
Filtering by

Clear all filters

ContributorsDaval, Charles (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-26
152521-Thumbnail Image.png
DescriptionThe purpose of this project is to explore the influence of folk music in guitar compositions by Manuel Ponce from 1923 to 1932. It focuses on his Tres canciones populares mexicanas and Tropico and Rumba.
ContributorsGarcia Santos, Arnoldo (Author) / Koonce, Frank (Thesis advisor) / Rogers, Rodney (Committee member) / Rotaru, Catalin (Committee member) / Arizona State University (Publisher)
Created2014
152929-Thumbnail Image.png
Description
Facial projection--i.e., the position of the upper face relative to the anterior cranial fossa--is an important component of craniofacial architecture in primates. Study of its variation is therefore important to understanding the bases of primate craniofacial form. Such research is relevant to studies of human evolution because the condition in

Homo

Facial projection--i.e., the position of the upper face relative to the anterior cranial fossa--is an important component of craniofacial architecture in primates. Study of its variation is therefore important to understanding the bases of primate craniofacial form. Such research is relevant to studies of human evolution because the condition in

Homo sapiens--in which facial projection is highly reduced, with the facial skeleton located primarily inferior (rather than anterior) to the braincase--is derived vis-à-vis other primates species, including others in the genus Homo. Previous research suggested that variation in facial projection is explained by: (1) cranial base angulation; (2) upper

facial length; (3) anterior cranial base length; (4) anterior sphenoid length; and/or (5) anterior middle cranial fossa length. However, previous research was based on taxonomically narrow samples and relatively small sample sizes, and comparative data on facial projection in anthropoid primates, with which these observations could be

contextualized, do not currently exist.

This dissertation fills this gap in knowledge. Specifically, data corresponding to the hypotheses listed above were collected from radiographs from a sample of anthropoid primates (N = 37 species; 756 specimens) . These data were subjected to phylogenetically-controlled multiple regression analyses. In addition, multivariate and univariate models were statistically compared, and the position of Homo sapiens relative to univariate and multivariate regression models was evaluated.

The results suggest that upper facial length, anterior cranial base length, and, to a lesser extent, cranial base angle are the most important predictors of facial projection. Homo sapiens conforms to the patterns found in anthropoid primates, suggesting that these same factors explain the condition in this species. However, a consideration of the

evidence from the fossil record in the context of these findings suggests that upper facial length is the most likely cause of the extremely low degree of facial projection in Homo sapiens. These results downplay the role of the brain in shaping the form of the human cranium. Instead, these results suggest that reduction in facial skeleton size--which may

be due to changes in diet--may be more important than previously suggested.
ContributorsRitzman, Terrence (Author) / Schwartz, Gary T (Thesis advisor) / Kimbel, William H. (Committee member) / Kaufman, Jason (Committee member) / Arizona State University (Publisher)
Created2014
150416-Thumbnail Image.png
Description
The pattern and strength of genetic covariation is shaped by selection so that it is strong among functionally related characters and weak among functionally unrelated characters. Genetic covariation is expressed as phenotypic covariation within species and acts as a constraint on evolution by limiting the ability of linked characters to

The pattern and strength of genetic covariation is shaped by selection so that it is strong among functionally related characters and weak among functionally unrelated characters. Genetic covariation is expressed as phenotypic covariation within species and acts as a constraint on evolution by limiting the ability of linked characters to evolve independently of one another. Such linked characters are "constrained" and are expected to express covariation both within and among species. In this study, the pattern and magnitude of covariation among aspects of dental size and shape are investigated in anthropoid primates. Pleiotropy has been hypothesized to play a significant role in derivation of derived hominin morphologies. This study tests a series of hypotheses; including 1) that negative within- and among-species covariation exists between the anterior (incisors and canines) and postcanine teeth, 2) that covariation is strong and positive between the canines and incisors, 3) that there is a dimorphic pattern of within-species covariation and coevolution for characters of the canine honing complex, 4) that patterns of covariation are stable among anthropoids, and 5) that genetic constraints have been a strong bias on the diversification of anthropoid dental morphology. The study finds that patterns of variance-covariance are conserved among species. Despite these shared patterns of variance-covariance, dental diversification has frequently occurred along dimensions not aligned with the vector of genetic constraint. As regards the canine honing complex, there is no evidence for a difference in the pleiotropic organization or the coevolution of characters of the complex in males and females, which undermines arguments that the complex is selectively important only in males. Finally, there is no evidence for strong or negative pleiotropy between any dental characters, which falsifies hypotheses that predict such relationships between incisors and postcanine teeth or between the canines and the postcanine teeth.
ContributorsDelezene, Lucas (Author) / Kimbel, William H. (Thesis advisor) / Schwartz, Gary T (Committee member) / Spencer, Mark (Committee member) / Verrelli, Brian C (Committee member) / Arizona State University (Publisher)
Created2011
ContributorsKotronakis, Dimitris (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-01
156876-Thumbnail Image.png
Description
Climate and environmental forcing are widely accepted to be important drivers of evolutionary and ecological change in mammal communities over geologic time scales. This paradigm has been particularly influential in studies of the eastern African late Cenozoic fossil record, in which aridification, increasing seasonality, and C4 grassland expansion are seen

Climate and environmental forcing are widely accepted to be important drivers of evolutionary and ecological change in mammal communities over geologic time scales. This paradigm has been particularly influential in studies of the eastern African late Cenozoic fossil record, in which aridification, increasing seasonality, and C4 grassland expansion are seen as having shaped the major patterns of human and faunal evolution. Despite the ubiquity of studies linking climate and environmental forcing to evolutionary and ecological shifts in the mammalian fossil record, many central components of this paradigm remain untested or poorly developed. To fill this gap, this dissertation employs biogeographical and macroecological analyses of present-day African mammal communities as a lens for understanding how abiotic change may have shaped community turnover and structure in the eastern African Plio-Pleistocene. Three dissertation papers address: 1) the role of ecological niche breadth in shaping divergent patterns of macroevolutionary turnover across clades; 2) the effect of climatic and environmental gradients on community assembly; 3) the relative influence of paleo- versus present-day climates in structuring contemporary patterns of community diversity. Results of these papers call into question many tenets of current theory, particularly: 1) that niche breadth differences (and, by extension, their influence on allopatric speciation) are important drivers of macroevolution, 2) that climate is more important than biotic interactions in community assembly, and 3) that communities today are in equilibrium with present-day climates. These findings highlight the need to critically reevaluate the role and scale-dependence of climate in mammal evolution and community ecology and to carefully consider potential time lags and disequilibrium dynamics in the fossil record.
ContributorsRowan, John (Author) / Reed, Kaye E (Thesis advisor) / Campisano, Christopher J (Committee member) / Franklin, Janet (Committee member) / Marean, Curtis W (Committee member) / Arizona State University (Publisher)
Created2018
136980-Thumbnail Image.png
Description
Many of the derived features of the human skeleton can be divided into two adaptive suites: traits related to bipedalism and traits related to encephalization. The cervical spine connects these adaptive suites and is itself unique in its marked lordosis. I approach human cervical evolution from three directions: the functional

Many of the derived features of the human skeleton can be divided into two adaptive suites: traits related to bipedalism and traits related to encephalization. The cervical spine connects these adaptive suites and is itself unique in its marked lordosis. I approach human cervical evolution from three directions: the functional significance of cervical curvature, the identification of cervical lordosis in osteological material, and the representation of the cervical spine in the hominin fossil record.
ContributorsFatica, Lawrence Martin (Author) / Kimbel, William (Thesis director) / Reed, Kaye (Committee member) / Schwartz, Gary (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2014-05
ContributorsDavin, Colin (Performer) / ASU Library. Music Library (Publisher)
Created2018-10-05
154295-Thumbnail Image.png
Description
This study explores how early modern humans used stone tool technology to adapt to changing climates and coastlines in the Middle Stone Age of South Africa. The MSA is associated with the earliest fossil evidence for modern humans and complex cultural behaviors during a time period of dramatic climate change.

This study explores how early modern humans used stone tool technology to adapt to changing climates and coastlines in the Middle Stone Age of South Africa. The MSA is associated with the earliest fossil evidence for modern humans and complex cultural behaviors during a time period of dramatic climate change. Human culture allows for the creation, use, and transmission of technological knowledge that can evolve with changing environmental conditions. Understanding the interactions between technology and the environment is essential to illuminating the role of culture during the origin of our species. This study is focused on understanding ancient tool use from the study of lithic edge damage patterns at archaeological assemblages in southern Africa by using image-based quantitative methods for analyzing stone tools. An extensive experimental program using replicated stone tools provides the comparative linkages between the archaeological artifacts and the tasks for which they were used. MSA foragers structured their tool use and discard behaviors on the landscape in several ways – by using and discarding hunting tools more frequently in the field rather than in caves/rockshelters, but similarly in coastal and interior contexts. This study provides evidence that during a significant microlithic technological shift seen in southern Africa at ~75,000 years ago, new technologies were developed alongside rather than replacing existing technologies. These results are compared with aspects of the European archaeological record at this time to identify features of early human technological behavior that may be unique to the evolutionary history of our species.
ContributorsSchoville, Benjamin J (Author) / Marean, Curtis W (Thesis advisor) / Barton, Michael (Committee member) / Hill, Kim (Committee member) / Arizona State University (Publisher)
Created2016
154568-Thumbnail Image.png
Description
Early weaning, slow somatic and dental growth, and late age at reproduction are all part of a suite of energetic trade-offs that have shaped human evolution. A similar suite of energetic trade-offs has shaped the evolution of the indriid-palaeopropithecid clade, though members of this clade exhibit extremely fast dental development

Early weaning, slow somatic and dental growth, and late age at reproduction are all part of a suite of energetic trade-offs that have shaped human evolution. A similar suite of energetic trade-offs has shaped the evolution of the indriid-palaeopropithecid clade, though members of this clade exhibit extremely fast dental development and nearly vestigial deciduous teeth. The development and functional occlusion of the primary postcanine dentition (i.e., deciduous premolars and molars) coincides with several life history parameters in great apes and indriids. This dissertation explored great ape dental macrowear, molar development in indriids, and molar size in lemurs with a broader goal of improving reconstructions of life history profiles in extinct primates. To this aim, macrowear and dental development were analyzed in apes and lemurs, respectively. Occlusal casts (six great ape species; N=278) were scanned to track mandibular fourth deciduous premolar (dp4) macrowear. Utilizing dental topographic analyses, changes in occlusal gradient and terrain were quantified. A subset of the great ape data (four species; n=199) was analyzed to test if differences in dp4 wear correlate with age at weaning. Using dental histology, molar development was reconstructed for Indri indri (n=1) and Avahi laniger (n=1). Life history and molar size data were collected from the literature. The results of this dissertation demonstrate that most great apes exhibited evidence of topographic maintenance, suggesting dp4s wear in a manner that maintain functional efficiency during growth and development; however, the manner in which maintenance is achieved (e.g., preservation of relief or complexity) is species specific. Dp4 macrowear is not correlated with age at weaning in great apes and is probably unreliable to reconstruct age at weaning in hominins. The pace of molar development in members of the indriid- palaeopropithecid clade did not correlate with body or brain size, an association present in several other primates. Associations of molar size with age at weaning suggest that expanding other developmental models (e.g., the inhibitory cascade) to life history is worth consideration. The broad variation in macrowear, dental development, and size highlights how the primary dentition may correlate with different life history parameters depending on the species and ecological setting, an important consideration when using teeth to reconstruct life history profiles.
ContributorsCatlett, Kierstin Kay (Author) / Schwartz, Gary (Thesis advisor) / Barton, Michael (Committee member) / Godfrey, Laurie (Committee member) / Reed, Kaye (Committee member) / Arizona State University (Publisher)
Created2016