Matching Items (4)

135266-Thumbnail Image.png

Shape factors for pseudo-steady state flow of a fractured-well in reservoirs of square shape

Description

Pseudo-steady state (PSS) flow is a dominant time-dependent flow regime during constant rate production from a closed reservoir. Recently Chen (2016) has obtained an exact analytical solution for the PSS

Pseudo-steady state (PSS) flow is a dominant time-dependent flow regime during constant rate production from a closed reservoir. Recently Chen (2016) has obtained an exact analytical solution for the PSS flow of a fully-penetrated fractured vertical well with finite conductivity in an elliptical drainage area. The availability of this analytical solution shortens the computational time required for such a solution by several orders of magnitude. This paper correlates the PSS flow of a fully-penetrated fractured vertical well in square drainage areas to Chen’s solution for an elliptical drainage area using shape factors. Specifically such a shape factor is established by equating the dimensionless productivity index of the PSS flow in a square domain to that in an elliptical domain of identical area. The shape factor was dependent on the proppant number and fracture penetration ratio. Productivity index data for fractured wells with finite conductivity in square drainage area and no skin from Romero et al. (2003) was compared to Chen’s solution assuming equivalent drainage areas and identical proppant numbers, with the penetration ratio as a parameter. A non-linear multi-variable regression analysis results in a unified shape factor function with a correlation coefficient of 0.80 and a minimized sum of squared error of 36.1. The achieved shape factor allows the analytical solution for PSS flow of fractured well in an elliptical drainage area to be applied to square drainage areas. This generalization of the PSS flow solution is of practical significance in fracture design optimization and production rate decline analysis. Future recommendations including testing the accuracy of the shape factor in predictions of proppant numbers not used in analysis using COMSOL™, and increasing the dataset pool to increase the model accuracy.

Contributors

Agent

Created

Date Created
  • 2016-05

155699-Thumbnail Image.png

Shape factors for the pseudo-steady state flow in fractured hydrocarbon wells of various drainage area geometries

Description

Pseudo-steady state (PSS) flow is an important time-dependent flow regime that

quickly follows the initial transient flow regime in the constant-rate production of

a closed boundary hydrocarbon reservoir. The characterization of the

Pseudo-steady state (PSS) flow is an important time-dependent flow regime that

quickly follows the initial transient flow regime in the constant-rate production of

a closed boundary hydrocarbon reservoir. The characterization of the PSS flow

regime is of importance in describing the reservoir pressure distribution as well as the

productivity index (PI) of the flow regime. The PI describes the production potential

of the well and is often used in fracture optimization and production-rate decline

analysis. In 2016, Chen determined the exact analytical solution for PSS flow of a

fully penetrated vertically fractured well with finite fracture conductivity for reservoirs

of elliptical shape. The present work aimed to expand Chen’s exact analytical solution

to commonly encountered reservoirs geometries including rectangular, rhomboid,

and triangular by introducing respective shape factors generated from extensive

computational modeling studies based on an identical drainage area assumption. The

aforementioned shape factors were generated and characterized as functions for use

in spreadsheet calculations as well as graphical format for simplistic in-field look-up

use. Demonstrative use of the shape factors for over 20 additional simulations showed

high fidelity of the shape factor to accurately predict (mean average percentage error

remained under 1.5 %) the true PSS constant by modulating Chen’s solution for

elliptical reservoirs. The methodology of the shape factor generation lays the ground

work for more extensive and specific shape factors to be generated for cases such as

non-concentric wells and other geometries not studied.

Contributors

Agent

Created

Date Created
  • 2017

153141-Thumbnail Image.png

Fluid production induced stress analysis surrounding an elliptic fracture

Description

Hydraulic fracturing is an effective technique used in well stimulation to increase petroleum well production. A combination of multi-stage hydraulic fracturing and horizontal drilling has led to the recent boom

Hydraulic fracturing is an effective technique used in well stimulation to increase petroleum well production. A combination of multi-stage hydraulic fracturing and horizontal drilling has led to the recent boom in shale gas production which has changed the energy landscape of North America.

During the fracking process, highly pressurized mixture of water and proppants (sand and chemicals) is injected into to a crack, which fractures the surrounding rock structure and proppants help in keeping the fracture open. Over a longer period, however, these fractures tend to close due to the difference between the compressive stress exerted by the reservoir on the fracture and the fluid pressure inside the fracture. During production, fluid pressure inside the fracture is reduced further which can accelerate the closure of a fracture.

In this thesis, we study the stress distribution around a hydraulic fracture caused by fluid production. It is shown that fluid flow can induce a very high hoop stress near the fracture tip. As the pressure gradient increases stress concentration increases. If a fracture is very thin, the flow induced stress along the fracture decreases, but the stress concentration at the fracture tip increases and become unbounded for an infinitely thin fracture.

The result from the present study can be used for studying the fracture closure problem, and ultimately this in turn can lead to the development of better proppants so that prolific well production can be sustained for a long period of time.

Contributors

Agent

Created

Date Created
  • 2014

156880-Thumbnail Image.png

Effect of using Organosilane with Crumb Rubber Modified Hot Mix Asphalt Mixtures

Description

Crumb rubber use in asphalt mixtures by means of wet process technology has been in place for several years in the United States with good performance record; however, it has

Crumb rubber use in asphalt mixtures by means of wet process technology has been in place for several years in the United States with good performance record; however, it has some shortcomings such as maintaining high mixing and compaction temperatures in the field production. Organosilane (OS), a nanotechnology chemical substantially improves the bonding between aggregate and asphalt by modifying the aggregate structure from hydrophilic to hydrophobic contributing to increased moisture resistance of conventional asphalt mixtures. Use of Organosilane also reduces the mixing and compaction temperatures and facilitates similar compaction effort at lower temperatures. The objective of this research study was first to perform a Superpave mix design for Crumb Rubber Modified Binder (CRMB) gap-graded mixture with and without Organosilane; and secondly, analyse the performance of CRMB mixtures with and without Organosilane by conducting various laboratory tests. Performance Grade (PG) 64-22 binder was used to create the gap-graded Hot Mix Asphalt (HMA) mixtures for this study. Laboratory tests included rotational viscometer binder test and mixtures tests: dynamic modulus, flow number, tensile strength ratio, and C* fracture test. Results from the tests indicated that the addition of Organosilane facilitated easier compaction efforts despite reduced mixing and compaction temperatures. Organosilane also modestly increased the moisture susceptibility and resistance to crack propagation yet retaining equal rutting resistance of the CRMB mixtures.

Contributors

Agent

Created

Date Created
  • 2018