Matching Items (4)
Filtering by

Clear all filters

171422-Thumbnail Image.png
Description
Marine algae are a rich source of bioactive halogenated natural products. Thepresence of these marine natural products has largely been attributed to their biosynthesis by organisms in these environments through a variety of different halogenation mechanisms. One of the key contributors in these halogenation processes are from the vanadium haloperoxidases (VHPOs) class of

Marine algae are a rich source of bioactive halogenated natural products. Thepresence of these marine natural products has largely been attributed to their biosynthesis by organisms in these environments through a variety of different halogenation mechanisms. One of the key contributors in these halogenation processes are from the vanadium haloperoxidases (VHPOs) class of enzymes. VHPOs perform an electrophilic halogenation through the oxidation of halide ions with hydrogen peroxide as the terminal oxidant. This technique produces an electrophilic halide equivalent that can directly halogenate organic substrates. Despite the numerous known reaction capabilities of this enzyme class, their construction of intramolecular ring formation between a carbon and nitrogen atom has remained unreported. Herein, this study presents a development of a ‘new to nature’ chemical reaction for lactam synthesis. In pursuit of this type of reaction, it was discovered that wild type VHPOs (e.g., Curvularia inaequalis, Corallina officinalis, Corallina pilulifera, Acaryochloria marina) produce halogenated iminolactone compounds from acyclic amides in excellent yields and selectivity greater than 99 percent yield. The extension to chlorocyclizations will also be discussed.
ContributorsMerker, Kayla Rose (Author) / Biegasiewicz, Kyle (Thesis advisor) / Ackerman-Biegasiewicz, Laura (Committee member) / Mills, Jeremy (Committee member) / Arizona State University (Publisher)
Created2022
166232-Thumbnail Image.png
Description

This thesis is about how Fe catalysts can be degraded using photocatalysis and how Fe catalysts can degrade small molecules in conjunction with light. The goal of this paper is to look further into more sustainable methods of organic chemistry. Many current organic chemistry practices involve the use of precious

This thesis is about how Fe catalysts can be degraded using photocatalysis and how Fe catalysts can degrade small molecules in conjunction with light. The goal of this paper is to look further into more sustainable methods of organic chemistry. Many current organic chemistry practices involve the use of precious metals. Iron is a more sustainable catalyst because it is abundant and inexpensive which is important for preserving the earth and making the organic chemistry more accessible. Along the same lines, light is a renewable energy source and has demonstrated its ability to aid in reactions. Overall, the goal of this paper is to explore the more sustainable alternatives to harsh and toxic organic chemistry practices through the use of Iron and light.

ContributorsBlenker, Grace (Author) / Ackerman-Biegasiewicz, Laura (Thesis director) / Redding, Kevin (Committee member) / Biegasiewicz, Kyle (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor)
Created2022-05
164829-Thumbnail Image.png
Description

Amidinates and guanidinates are promising supporting ligands in organometallic and coordination chemistry, highly valued for their accessibility, tunability, and comparability with other popular anionic N-chelating hard donor ligands like β-diketiminates. By far the most powerful way to access these ligands involves direct metal-nucleophile insertion into N,N’- substituted carbodiimides. However, the

Amidinates and guanidinates are promising supporting ligands in organometallic and coordination chemistry, highly valued for their accessibility, tunability, and comparability with other popular anionic N-chelating hard donor ligands like β-diketiminates. By far the most powerful way to access these ligands involves direct metal-nucleophile insertion into N,N’- substituted carbodiimides. However, the majority of reported examples require the use of commercially accessible carbodiimide peptide coupling reagents with simple alkyl substituents leading to low variation in potential substituents. Presented here is the design, synthesis, and isolation of a novel N,N’-bis[3-(diphenylphosphino)propyl]carbodiimide via an Aza-Wittig reaction between two previously described air stable substrates. At room temperature, 3-(diphenylphosphanyl-borane)-propylisocyanate was added to N-(3-(diphenylphospino)propyl)-triphenylphosphinimine, leading to product formation in minutes. One-pot phosphine-borane deprotection, followed by simple filtration of the crude mixture through a small, basic silica plug using pentane and diethyl ether granted the corresponding carbodiimide in high purity and yield (over 70%), confirmed by 1H, 13C, and 31P NMR spectroscopy. In addition to accessing different central carbon substituents, modification of phosphine substituents should be easily accessible through minor variations in the synthesis. With these precursors, anionic amidinates and guanidinates capable of κ4 -N,N,P,P-coordination may be accessed. The ability of the labile phosphine arms to associate and dissociate may facilitate catalysis. Thus, this carbodiimide provides a tunable, reliable one step precursor to novel substituted amidinates and guanidinates for homogeneous transition metal catalysis.

ContributorsLeland, Brock (Author) / Trovitch, Ryan (Thesis director) / Biegasiewicz, Kyle (Committee member) / Seo, Don (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / Department of Economics (Contributor)
Created2022-05
165545-Thumbnail Image.png
Description

Chemistry has always played a foundational role in the synthesis of pharmaceuticals. With the rapid growth of the global population, the health and medical needs have also rapidly increased. In order to provide drugs capable of mediating symptoms and curing diseases, organic chemistry provides drug derivatives utilizing a limited number

Chemistry has always played a foundational role in the synthesis of pharmaceuticals. With the rapid growth of the global population, the health and medical needs have also rapidly increased. In order to provide drugs capable of mediating symptoms and curing diseases, organic chemistry provides drug derivatives utilizing a limited number of chemical building blocks and privileged structures. Of these limited building blocks, this project explores Late–stage C–H functionalization of (iso)quinolines using abundant metal catalysis in order to achieve site-selective molecular modification.

ContributorsPearson, Amanda (Author) / Ackerman–Biegasiewicz, Laura (Thesis director) / Biegasiewicz, Kyle (Committee member) / Gould, Ian (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2022-05