Matching Items (11)
Filtering by

Clear all filters

135407-Thumbnail Image.png
Description
This research attempts to determine the most effective method of synthesizing a peptide such that it can be utilized as a targeting moiety for polymeric micelles. Two melanoma-associated peptides with high in vitro and in vivo binding affinity for TNF receptors have been identified and synthesized. Matrix Assisted Laser Desorption/Ionization-Time

This research attempts to determine the most effective method of synthesizing a peptide such that it can be utilized as a targeting moiety for polymeric micelles. Two melanoma-associated peptides with high in vitro and in vivo binding affinity for TNF receptors have been identified and synthesized. Matrix Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-ToF) was used to help verify the structure of both peptides, which were purified using Reversed-Phase High Performance Liquid Chromatography (RP-HPLC). The next steps in the research are to attach the peptides to a micelle and determine their impact on micelle stability.
ContributorsMoe, Anna Marguerite (Author) / Green, Matthew (Thesis director) / Jones, Anne (Committee member) / Sullivan, Millicent (Committee member) / Chemical Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Sandra Day O'Connor College of Law (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
139859-Thumbnail Image.png
Description

The FDA-approved drug bexarotene has been predominantly utilized for the treatment of cutaneous T-cell lymphoma (CTLC), but has shown promise as an off label treatment for various other cancers as well as Alzheimer's disease (AD). However, harmful side effects such as hypothyroidism have catalyzed a search for alternative rexinoids which

The FDA-approved drug bexarotene has been predominantly utilized for the treatment of cutaneous T-cell lymphoma (CTLC), but has shown promise as an off label treatment for various other cancers as well as Alzheimer's disease (AD). However, harmful side effects such as hypothyroidism have catalyzed a search for alternative rexinoids which retain similar levels of RXR agonism while reducing the undesirable effects incurred by bexarotene. This honors thesis outlines the steps taken to design and synthesize novel analogues of the selective retinoid-X-receptor (RXR) agonist 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (bexarotene). Corresponding NMR spectra indicates the successful construction of four novel compounds which are structurally similar to known, biologically-evaluated rexinoids that have induced fewer side effects while stimulating greater levels of RXR selectivity as compared to bexarotene. Future In vitro analyses of these four analogues coupled with the recognized efficacy of their parent compounds demonstrate the chemotherapeutic potential of structurally modified bexarotene analogues

ContributorsDavidson, Jesse Raymond (Author) / Wagner, Carl (Thesis director) / Ball, Rebecca (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137623-Thumbnail Image.png
Description
Due to its difficult nature, organic chemistry is receiving much research attention across the nation to develop more efficient and effective means to teach it. As part of that, Dr. Ian Gould at ASU is developing an online organic chemistry educational website that provides help to students, adapts to their

Due to its difficult nature, organic chemistry is receiving much research attention across the nation to develop more efficient and effective means to teach it. As part of that, Dr. Ian Gould at ASU is developing an online organic chemistry educational website that provides help to students, adapts to their responses, and collects data about their performance. This thesis creative project addresses the design and implementation of an input parser for organic chemistry reagent questions, to appear on his website. After students used the form to submit questions throughout the Spring 2013 semester in Dr. Gould's organic chemistry class, the data gathered from their usage was analyzed, and feedback was collected. The feedback obtained from students was positive, and suggested that the input parser accomplished the educational goals that it sought to meet.
ContributorsBeerman, Eric Christopher (Author) / Gould, Ian (Thesis director) / Wilkerson, Kelly (Committee member) / Mosca, Vince (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-05
135814-Thumbnail Image.png
Description
The two chapters of this thesis focus on different aspects of DNA and the properties of nucleic acids as the whole. Chapter 1 focuses on the structure of DNA and its relationship to enzymatic efficiency. Chapter 2 centers itself on threose nucleic acid and optimization of a step in the

The two chapters of this thesis focus on different aspects of DNA and the properties of nucleic acids as the whole. Chapter 1 focuses on the structure of DNA and its relationship to enzymatic efficiency. Chapter 2 centers itself on threose nucleic acid and optimization of a step in the path to its synthesis. While Chapter 1 discusses DNA and Uracil-DNA Glycosylase with regards to the base excision repair pathway, Chapter 2 focuses on chemical synthesis of an intermediate in the pathway to the synthesis of TNA, an analogous structure with a different saccharide in the sugar-phosphate backbone.
Chapter 1 covers the research under Dr. Levitus. Four oligonucleotides were reacted for zero, five, and thirty minutes with uracil-DNA glycosylase and subsequent addition of piperidine. These oligonucleotides were chosen based on their torsional rigidities as predicted by past research and predictions. The objective was to better understand the relationship between the sequence of DNA surrounding the incorrect base and the enzyme’s ability to remove said base in order to prepare the DNA for the next step of the base excision repair pathway. The first pair of oligonucleotides showed no statistically significant difference in enzymatic efficiency with p values of 0.24 and 0.42, while the second pair had a p value of 0.01 at the five-minute reaction. The second pair is currently being researched at different reaction times to determine at what point the enzyme seems to equilibrate and react semi-equally with all sequences of DNA.
Chapter 2 covers the research conducted under Dr. Chaput. Along the TNA synthesis pathway, the nitrogenous base must be added to the threofuranose sugar. The objective was to optimize the original protocol of Vorbrüggen glycosylation and determine if there were better conditions for the synthesis of the preferred regioisomer. This research showed that toluene and ortho-xylene were more preferable as solvents than the original anhydrous acetonitrile, as the amount of preferred isomer product far outweighed the amount of side product formed, as well as improving total yield overall. The anhydrous acetonitrile reaction had a final yield of 60.61% while the ortho-xylene system had a final yield of 94.66%, an increase of approximately 32%. The crude ratio of preferred isomer to side product was also improved, as it went from 18% undesired in anhydrous acetonitrile to 4% undesired in ortho-xylene, both values normalized to the preferred regioisomer.
ContributorsTamirisa, Ritika Sai (Author) / Levitus, Marcia (Thesis director) / Stephanopoulos, Nicholas (Committee member) / Windman, Todd (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
Cyclodextrins are known for their pharmaceutical applications in a range of pathologies. Beta(ꞵ)-cyclodextrins have been suggested to be effective scaffolds that can ligate to peptides when chemically modified, which has the potential to be cost-effective in comparison to other available treatments for antiviral therapeutics. It is hypothesized that a

Cyclodextrins are known for their pharmaceutical applications in a range of pathologies. Beta(ꞵ)-cyclodextrins have been suggested to be effective scaffolds that can ligate to peptides when chemically modified, which has the potential to be cost-effective in comparison to other available treatments for antiviral therapeutics. It is hypothesized that a ꞵ-cyclodextrin platform can be modified through a few-step reaction process to develop a ꞵ-cyclodextrin-DBCO-GFP nanobody. The findings of this few-step reaction support the general approach of conjugating the ꞵ-cyclodextrin derivative to GPF nanobody for developing a cyclodextrin antiviral scaffold.
ContributorsTaniguchi, Tohma (Author) / Hariadi, Rizal (Thesis director) / Stephanopoulos, Nicholas (Committee member) / Sasmal, Ranjan (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
166232-Thumbnail Image.png
Description

This thesis is about how Fe catalysts can be degraded using photocatalysis and how Fe catalysts can degrade small molecules in conjunction with light. The goal of this paper is to look further into more sustainable methods of organic chemistry. Many current organic chemistry practices involve the use of precious

This thesis is about how Fe catalysts can be degraded using photocatalysis and how Fe catalysts can degrade small molecules in conjunction with light. The goal of this paper is to look further into more sustainable methods of organic chemistry. Many current organic chemistry practices involve the use of precious metals. Iron is a more sustainable catalyst because it is abundant and inexpensive which is important for preserving the earth and making the organic chemistry more accessible. Along the same lines, light is a renewable energy source and has demonstrated its ability to aid in reactions. Overall, the goal of this paper is to explore the more sustainable alternatives to harsh and toxic organic chemistry practices through the use of Iron and light.

ContributorsBlenker, Grace (Author) / Ackerman-Biegasiewicz, Laura (Thesis director) / Redding, Kevin (Committee member) / Biegasiewicz, Kyle (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor)
Created2022-05
165433-Thumbnail Image.png
Description

Augmented Reality (AR) especially when used with mobile devices enables the creation of applications that can help students in chemistry learn anything from basic to more advanced concepts. In Chemistry specifically, the 3D representation of molecules and chemical structures is of vital importance to students and yet when printed in

Augmented Reality (AR) especially when used with mobile devices enables the creation of applications that can help students in chemistry learn anything from basic to more advanced concepts. In Chemistry specifically, the 3D representation of molecules and chemical structures is of vital importance to students and yet when printed in 2D as on textbooks and lecture notes it can be quite hard to understand those vital 3D concepts. ARsome Chemistry is an app that aims to utilize AR to display complex and simple molecules in 3D to actively teach students these concepts through quizzes and other features. The ARsome chemistry app uses image target recognition to allow students to hand-draw or print line angle structures or chemical formulas of molecules and then scan those targets to get 3D representation of molecules. Students can use their fingers and the touch screen to zoom, rotate, and highlight different portions of the molecule to gain a better understanding of the molecule's 3D structure. The ARsome chemistry app also features the ability to utilize image recognition to allow students to quiz themselves on drawing line-angle structures and show it to the camera for the app to check their work. The ARsome chemistry app is an accessible and cost-effective study aid platform for students for on demand, interactive, 3D representations of complex molecules.

ContributorsEvans, Brandon (Author) / LiKamWa, Robert (Thesis director) / Johnson, Mina (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
166075-Thumbnail Image.png
Description

Non-canonical amino acids (NCAAs) can be used in protein chemistry to determine their structures. A common method for imaging proteins is cryo-electron microscopy (cryo-EM) which is ideal for imaging proteins that cannot be obtained in large quantities. Proteins with indistinguishable features are difficult to image using this method due to

Non-canonical amino acids (NCAAs) can be used in protein chemistry to determine their structures. A common method for imaging proteins is cryo-electron microscopy (cryo-EM) which is ideal for imaging proteins that cannot be obtained in large quantities. Proteins with indistinguishable features are difficult to image using this method due to the large size requirements, therefore antibodies designed specifically for binding these proteins have been utilized to better identify the proteins. By using an existing antibody that binds to stilbene, NCAAs containing this molecule can be used as a linker between proteins and an antibody. Stilbene containing amino acids can be integrated into proteins to make this process more access able. In this paper, synthesis methods for various NCAAs containing stilbene were proposed. The resulting successfully synthesized NCAAs were E)-N6-(5-oxo-5-((4-styrylphenyl) amino) pentanoyl) lysine, (R,E)-2-amino-3-(5-oxo-5-((4-styrylphenyl)amino)pentanamido)propanoic acid, (E)-2-amino-5-(5-oxo-5-((4-styrylphenyl) amino) pentanamido) pentanoic acid. A synthesis for three more shorter amino acids, (R,E)-2-amino-3-(3-oxo-3-((4-styrylphenyl) amino) propanamido) propanoic acid, (E)-2-amino-5-(3-oxo-3-((4-styrylphenyl) amino) propanamido) pentanoic acid, and (E)-N6-(3-oxo-3-((4-styrylphenyl) amino) propanoyl) lysine, is also proposed.

ContributorsJenkins, Bryll (Author) / Mills, Jeremy (Thesis director) / Ghirlanda, Giovanna (Committee member) / Nannenga, Brent (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2022-05
164829-Thumbnail Image.png
Description

Amidinates and guanidinates are promising supporting ligands in organometallic and coordination chemistry, highly valued for their accessibility, tunability, and comparability with other popular anionic N-chelating hard donor ligands like β-diketiminates. By far the most powerful way to access these ligands involves direct metal-nucleophile insertion into N,N’- substituted carbodiimides. However, the

Amidinates and guanidinates are promising supporting ligands in organometallic and coordination chemistry, highly valued for their accessibility, tunability, and comparability with other popular anionic N-chelating hard donor ligands like β-diketiminates. By far the most powerful way to access these ligands involves direct metal-nucleophile insertion into N,N’- substituted carbodiimides. However, the majority of reported examples require the use of commercially accessible carbodiimide peptide coupling reagents with simple alkyl substituents leading to low variation in potential substituents. Presented here is the design, synthesis, and isolation of a novel N,N’-bis[3-(diphenylphosphino)propyl]carbodiimide via an Aza-Wittig reaction between two previously described air stable substrates. At room temperature, 3-(diphenylphosphanyl-borane)-propylisocyanate was added to N-(3-(diphenylphospino)propyl)-triphenylphosphinimine, leading to product formation in minutes. One-pot phosphine-borane deprotection, followed by simple filtration of the crude mixture through a small, basic silica plug using pentane and diethyl ether granted the corresponding carbodiimide in high purity and yield (over 70%), confirmed by 1H, 13C, and 31P NMR spectroscopy. In addition to accessing different central carbon substituents, modification of phosphine substituents should be easily accessible through minor variations in the synthesis. With these precursors, anionic amidinates and guanidinates capable of κ4 -N,N,P,P-coordination may be accessed. The ability of the labile phosphine arms to associate and dissociate may facilitate catalysis. Thus, this carbodiimide provides a tunable, reliable one step precursor to novel substituted amidinates and guanidinates for homogeneous transition metal catalysis.

ContributorsLeland, Brock (Author) / Trovitch, Ryan (Thesis director) / Biegasiewicz, Kyle (Committee member) / Seo, Don (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / Department of Economics (Contributor)
Created2022-05
165545-Thumbnail Image.png
Description

Chemistry has always played a foundational role in the synthesis of pharmaceuticals. With the rapid growth of the global population, the health and medical needs have also rapidly increased. In order to provide drugs capable of mediating symptoms and curing diseases, organic chemistry provides drug derivatives utilizing a limited number

Chemistry has always played a foundational role in the synthesis of pharmaceuticals. With the rapid growth of the global population, the health and medical needs have also rapidly increased. In order to provide drugs capable of mediating symptoms and curing diseases, organic chemistry provides drug derivatives utilizing a limited number of chemical building blocks and privileged structures. Of these limited building blocks, this project explores Late–stage C–H functionalization of (iso)quinolines using abundant metal catalysis in order to achieve site-selective molecular modification.

ContributorsPearson, Amanda (Author) / Ackerman–Biegasiewicz, Laura (Thesis director) / Biegasiewicz, Kyle (Committee member) / Gould, Ian (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2022-05