Matching Items (3)
Filtering by

Clear all filters

153119-Thumbnail Image.png
Description
The communication of genetic material with biomolecules has been a major interest in cancer biology research for decades. Among its different levels of involvement, DNA is known to be a target of several antitumor agents. Additionally, tissue specific interaction between macromolecules such as proteins and structurally important regions of DNA

The communication of genetic material with biomolecules has been a major interest in cancer biology research for decades. Among its different levels of involvement, DNA is known to be a target of several antitumor agents. Additionally, tissue specific interaction between macromolecules such as proteins and structurally important regions of DNA has been reported to define the onset of certain types of cancers.

Illustrated in Chapter 1 is the general history of research on the interaction of DNA and anticancer drugs, most importantly different congener of bleomycin (BLM). Additionally, several synthetic analogues of bleomycin, including the structural components and functionalities, are discussed.

Chapter 2 describes a new approach to study the double-strand DNA lesion caused by antitumor drug bleomycin. The hairpin DNA library used in this study displays numerous cleavage sites demonstrating the versatility of bleomycin interaction with DNA. Interestingly, some of those cleavage sites suggest a novel mechanism of bleomycin interaction, which has not been reported before.

Cytidine methylation has generally been found to decrease site-specific cleavage of DNA by BLM, possibly due to structural change and subsequent reduced bleomycin-mediated recognition of DNA. As illustrated in Chapter 3, three hairpin DNAs known to be strongly bound by bleomycin, and their methylated counterparts, were used to study the dynamics of bleomycin-induced degradation of DNAs in cancer cells. Interestingly, cytidine methylation on one of the DNAs has also shown a major shift in the intensity of bleomycin induced double-strand DNA cleavage pattern, which is known to be a more potent form of bleomycin induced cleavages.

DNA secondary structures are known to play important roles in gene regulation. Chapter 4 demonstrates a structural change of the BCL2 promoter element as a result of its dynamic interaction with the individual domains of hnRNP LL, which is essential to facilitate the transcription of BCL2. Furthermore, an in vitro protein synthesis technique has been employed to study the dynamic interaction between protein domains and the i-motif DNA within the promoter element. Several constructs were made involving replacement of a single amino acid with a fluorescent analogue, and these were used to study FRET between domain 1 and the i-motif, the later of which harbored a fluorescent acceptor nucleotide analogue.
ContributorsRoy, Basab (Author) / Hecht, Sidney M. (Thesis advisor) / Jones, Anne (Committee member) / Levitus, Marcia (Committee member) / Chaput, John (Committee member) / Arizona State University (Publisher)
Created2014
135407-Thumbnail Image.png
Description
This research attempts to determine the most effective method of synthesizing a peptide such that it can be utilized as a targeting moiety for polymeric micelles. Two melanoma-associated peptides with high in vitro and in vivo binding affinity for TNF receptors have been identified and synthesized. Matrix Assisted Laser Desorption/Ionization-Time

This research attempts to determine the most effective method of synthesizing a peptide such that it can be utilized as a targeting moiety for polymeric micelles. Two melanoma-associated peptides with high in vitro and in vivo binding affinity for TNF receptors have been identified and synthesized. Matrix Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-ToF) was used to help verify the structure of both peptides, which were purified using Reversed-Phase High Performance Liquid Chromatography (RP-HPLC). The next steps in the research are to attach the peptides to a micelle and determine their impact on micelle stability.
ContributorsMoe, Anna Marguerite (Author) / Green, Matthew (Thesis director) / Jones, Anne (Committee member) / Sullivan, Millicent (Committee member) / Chemical Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Sandra Day O'Connor College of Law (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137623-Thumbnail Image.png
Description
Due to its difficult nature, organic chemistry is receiving much research attention across the nation to develop more efficient and effective means to teach it. As part of that, Dr. Ian Gould at ASU is developing an online organic chemistry educational website that provides help to students, adapts to their

Due to its difficult nature, organic chemistry is receiving much research attention across the nation to develop more efficient and effective means to teach it. As part of that, Dr. Ian Gould at ASU is developing an online organic chemistry educational website that provides help to students, adapts to their responses, and collects data about their performance. This thesis creative project addresses the design and implementation of an input parser for organic chemistry reagent questions, to appear on his website. After students used the form to submit questions throughout the Spring 2013 semester in Dr. Gould's organic chemistry class, the data gathered from their usage was analyzed, and feedback was collected. The feedback obtained from students was positive, and suggested that the input parser accomplished the educational goals that it sought to meet.
ContributorsBeerman, Eric Christopher (Author) / Gould, Ian (Thesis director) / Wilkerson, Kelly (Committee member) / Mosca, Vince (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-05