Matching Items (3)
Filtering by

Clear all filters

156099-Thumbnail Image.png
Description
To date, there have not been any studies in a human population that explore the potential of vinegar ingestion in reducing visceral fat, a common yet serious metabolic disease risk factor. However, previous research in animal models exhibit promising findings, showing that vinegar is effective at reducing visceral fat. This

To date, there have not been any studies in a human population that explore the potential of vinegar ingestion in reducing visceral fat, a common yet serious metabolic disease risk factor. However, previous research in animal models exhibit promising findings, showing that vinegar is effective at reducing visceral fat. This is thought to be due to the activation of AMPK (adenosine monophosphate protein kinase) by acetic acid, the active ingredient in vinegar. The purpose of this study was to identify if this potentially groundbreaking relationship exists in human subjects. Healthy, nonsmoking, sedentary adults between the ages 18-45 y and a waist circumference measurement greater than or equal to 33 inches for women and 38 inches for men were recruited for this study. Twenty-three participants completed this 8-week, parallel arm, randomized control trial that tested the efficacy of red wine vinegar consumption (2 tablespoons red wine vinegar, twice per day, before a meal; providing 3.6 g acetic acid) against a placebo (1 apple cider vinegar pill, twice per day, before a meal; providing 0.0225 g acetic acid) for 8 weeks. Participants were randomized into either the vinegar (VIN) or control (CON) group after being stratified by age, gender, waist circumference, and weight. Results found that the VIN group experienced a 2% decrease in visceral fat (cm3, quantified by a DXA scan), but this change did not differ significantly from that of the CON group (p=0.256). The VIN group also experienced a slight decrease in insulin compared to the CON group, but this change was not significantly different than the control change (p=0.125). However, the change in HOMA-IR trended downward in the VIN group (-16%) as compared to the CON group (+9%) (p=0.079) with a large effect size, 0.153. Other parameters did not show statistically significant results between the groups. Further research is indicated in order to examine the potential of vinegar to reduce visceral fat.
ContributorsBaker, Olivia (Author) / Johnston, Carol (Thesis advisor) / Mayol-Kreiser, Sandra (Committee member) / Lespron, Christy (Committee member) / Arizona State University (Publisher)
Created2018
155258-Thumbnail Image.png
Description
Background: Acetic acid in vinegar has demonstrated antiglycemic effects in previous studies; however, the mechanism is unknown.

Objective: To determine whether acetic acid dissociates in the addition of sodium chloride and describe a flavorful vinaigrette that maintains the functional properties of acetic acid.

Design: Phase I - Ten healthy subjects

Background: Acetic acid in vinegar has demonstrated antiglycemic effects in previous studies; however, the mechanism is unknown.

Objective: To determine whether acetic acid dissociates in the addition of sodium chloride and describe a flavorful vinaigrette that maintains the functional properties of acetic acid.

Design: Phase I - Ten healthy subjects (23-40 years) taste tested five homemade vinaigrette and five commercial dressings. Perceived saltiness, sweetness, tartness, and overall tasted were scored using a modified labeled affective magnitude scale. Each dressing was tested three times for pH with a calibrated meter. Phase II – Randomized crossover trial testing six dressings against a control dressing two groups of nine healthy adult subjects (18-52 years). Height, weight and calculated body mass index (BMI) were performed at baseline. Subjects participated in four test sessions each, at least seven days apart. After a 10-hour fast, participants consumed 38g of the test drink, followed by a bagel meal. Capillary blood glucose was obtained at fasting, and every 30 minutes over a 2-hour period the test meal.

Results: Dressing pH reduced as sodium content increased. In the intervention trials, no significant differences were observed between groups (p >0.05). The greatest reduction in postprandial glycemia (~21%) was observed in the dressing containing 200 mg of sodium. Effect size was large in both group 1 (η2=0.161) and group 2 (η2=0.577).

Conclusion: The inclusion of sodium into acetic acid may impair its ability to attenuate blood glucose after a meal.
ContributorsBonsall, Amber K (Author) / Johnston, Carol (Thesis advisor) / Mayol-Kreiser, Sandra (Committee member) / Lespron, Christy (Committee member) / Arizona State University (Publisher)
Created2017
155582-Thumbnail Image.png
Description
Curcumin is an active ingredient of Curcuma longa (Turmeric) and is studied extensively for its antioxidant, anti-inflammatory, anti-bacterial, anti-viral, and anti-cancer properties. The purpose of this study was to examine the effects of turmeric on blood glucose and plasma insulin levels. The study utilized a placebo-controlled, randomized cross-over

Curcumin is an active ingredient of Curcuma longa (Turmeric) and is studied extensively for its antioxidant, anti-inflammatory, anti-bacterial, anti-viral, and anti-cancer properties. The purpose of this study was to examine the effects of turmeric on blood glucose and plasma insulin levels. The study utilized a placebo-controlled, randomized cross-over design with participants serving as their own control. Eight glucose tolerant healthy participants completed the full study. Three-weeks washout period was kept in between six-weeks. Prior to the test meal day, participants were asked to eat a bagel with their evening dinner. During the day of the test meal, participants reported to the test site in a rested and fasted state. Participants completed mashed potato meal tests with 500 mg of turmeric powder or placebo mixed in water, followed by 3 weeks of 500 mg turmeric or placebo supplement ingestion at home. During this visit blood glucose finger picks were obtained at fasting, 30, 60, 90, and 120 min post-meal. Blood plasma insulin at fasting and at 30 min after the test meal were also obtained. During week 4, participants reported to the test site in a rested and fasted state where fasting blood glucose finger pricks and blood plasma insulin were measured. During week 5 to 7, participants were given a washout time-period. During week 8, entire process from week 1 to 4 was repeated by interchanging the groups. Compared to placebo, reduction in postprandial blood glucose and insulin response were non-significant after ingestion of turmeric powder. Taking turmeric for 3 weeks had no change in blood glucose and insulin levels. However, taking turmeric powder supplements for 3 weeks, showed a 4.4% reduction in blood glucose. Change in insulin at 30 min were compared with baseline insulin level showing no significant change between placebo and turmeric group. Fasting insulin after 3-weeks consumption of turmeric did not show any significant change, but showed a larger effect size (0.08). Future research is essential to examine the turmeric powder supplement benefits over a long period of time in healthy adults and whether it is beneficial in preventing the occurrence of type 2 diabetes.
ContributorsOza, Namrata (Author) / Johnston, Carol (Thesis advisor) / Mayol-Kreiser, Sandra (Committee member) / Lespron, Christy (Committee member) / Arizona State University (Publisher)
Created2017