Matching Items (4)
152030-Thumbnail Image.png
Description
Recently, the use of zinc oxide (ZnO) nanowires as an interphase in composite materials has been demonstrated to increase the interfacial shear strength between carbon fiber and an epoxy matrix. In this research work, the strong adhesion between ZnO and carbon fiber is investigated to elucidate the interactions at the

Recently, the use of zinc oxide (ZnO) nanowires as an interphase in composite materials has been demonstrated to increase the interfacial shear strength between carbon fiber and an epoxy matrix. In this research work, the strong adhesion between ZnO and carbon fiber is investigated to elucidate the interactions at the interface that result in high interfacial strength. First, molecular dynamics (MD) simulations are performed to calculate the adhesive energy between bare carbon and ZnO. Since the carbon fiber surface has oxygen functional groups, these were modeled and MD simulations showed the preference of ketones to strongly interact with ZnO, however, this was not observed in the case of hydroxyls and carboxylic acid. It was also found that the ketone molecules ability to change orientation facilitated the interactions with the ZnO surface. Experimentally, the atomic force microscope (AFM) was used to measure the adhesive energy between ZnO and carbon through a liftoff test by employing highly oriented pyrolytic graphite (HOPG) substrate and a ZnO covered AFM tip. Oxygen functionalization of the HOPG surface shows the increase of adhesive energy. Additionally, the surface of ZnO was modified to hold a negative charge, which demonstrated an increase in the adhesive energy. This increase in adhesion resulted from increased induction forces given the relatively high polarizability of HOPG and the preservation of the charge on ZnO surface. It was found that the additional negative charge can be preserved on the ZnO surface because there is an energy barrier since carbon and ZnO form a Schottky contact. Other materials with the same ionic properties of ZnO but with higher polarizability also demonstrated good adhesion to carbon. This result substantiates that their induced interaction can be facilitated not only by the polarizability of carbon but by any of the materials at the interface. The versatility to modify the magnitude of the induced interaction between carbon and an ionic material provides a new route to create interfaces with controlled interfacial strength.
ContributorsGalan Vera, Magdian Ulises (Author) / Sodano, Henry A (Thesis advisor) / Jiang, Hanqing (Committee member) / Solanki, Kiran (Committee member) / Oswald, Jay (Committee member) / Speyer, Gil (Committee member) / Arizona State University (Publisher)
Created2013
137563-Thumbnail Image.png
DescriptionThis thesis contains the experimental methods, analysis and results used to test the energy dissipation and impact resistance characteristics of CarbonFlex, a lightweight composite that combines strong fiber technology with a unique polymer coating for use in wood residential structures. Comparisons are made between CarbonFlex and the traditional plywood model.
ContributorsCarroll, Matthew Stokeley (Author) / Attard, Thomas (Thesis director) / Fafitis, Apostolos (Committee member) / Parrish, Kristen (Committee member) / Barrett, The Honors College (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2013-05
Description
A novel approach, the Invariant Based Theory of Composites and the "Trace" method it proposes, has the potential to reduce aerospace composite development times and costs by over 30% thus reinvigorating the development process and encouraging composite technology growth. The "trace" method takes advantage of inherent stiffness properties of laminates,

A novel approach, the Invariant Based Theory of Composites and the "Trace" method it proposes, has the potential to reduce aerospace composite development times and costs by over 30% thus reinvigorating the development process and encouraging composite technology growth. The "trace" method takes advantage of inherent stiffness properties of laminates, specifically carbon fiber, to make predictions of material properties used to derive design allowables. The advantages of the "trace" theory may not necessarily be specific to the aerospace industry, however many automotive manufacturers are facing environmental, social and political pressure to increase the gas mileage in their vehicles and reduce their carbon footprint. Therefore, the use of lighter materials, such as carbon fiber composites, to replace heavier metals in cars is inevitable yet as of now few auto manufacturers implement composites in their cars. The high material, testing and development costs, much like the aerospace industry, have been prohibitive to widespread use of these materials but progress is being made in overcoming those challenges. The "trace" method, while initially intended for quasi-isotropic, aerospace grade carbon-fiber laminates, still yields reasonable, and correctable, results for types of laminates as well such as with woven fabrics and thermoplastic matrices, much of which are being used in these early stages of automotive composite development. Despite the varying use of materials, the "trace" method could potentially boost automotive composites in a similar way to the aerospace industry by reducing testing time and costs and perhaps even playing a role in establishing emerging simulations of these materials.
ContributorsBrown, William Ross (Author) / Adams, James (Thesis director) / Anwar, Shahriar (Committee member) / Krause, Stephen (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
158329-Thumbnail Image.png
Description
Precursors of carbon fibers include rayon, pitch, and polyacrylonitrile fibers that can be heat-treated for high-strength or high-modulus carbon fibers. Among them, polyacrylonitrile has been used most frequently due to its low viscosity for easy processing and excellent performance for high-end applications. To further explore polyacrylonitrile-based fibers for better precursors,

Precursors of carbon fibers include rayon, pitch, and polyacrylonitrile fibers that can be heat-treated for high-strength or high-modulus carbon fibers. Among them, polyacrylonitrile has been used most frequently due to its low viscosity for easy processing and excellent performance for high-end applications. To further explore polyacrylonitrile-based fibers for better precursors, in this study, carbon nanofillers were introduced in the polymer matrix to examine their reinforcement effects and influences on carbon fiber performance. Two-dimensional graphene nanoplatelets were mainly used for the polymer reinforcement and one-dimensional carbon nanotubes were also incorporated in polyacrylonitrile as a comparison. Dry-jet wet spinning was used to fabricate the composite fibers. Hot-stage drawing and heat-treatment were used to evolve the physical microstructures and molecular morphologies of precursor and carbon fibers. As compared to traditionally used random dispersions, selective placement of nanofillers was effective in improving composite fiber properties and enhancing mechanical and functional behaviors of carbon fibers. The particular position of reinforcement fillers with polymer layers was enabled by the in-house developed spinneret used for fiber spinning. The preferential alignment of graphitic planes contributed to the enhanced mechanical and functional behaviors than those of dispersed nanoparticles in polyacrylonitrile composites. The high in-plane modulus of graphene and the induction to polyacrylonitrile molecular carbonization/graphitization were the motivation for selectively placing graphene nanoplatelets between polyacrylonitrile layers. Mechanical tests, scanning electron microscopy, thermal, and electrical properties were characterized. Applications such as volatile organic compound sensing and pressure sensing were demonstrated.
ContributorsFranklin, Rahul Joseph (Author) / Song, Kenan (Thesis advisor) / Jiao, Yang (Thesis advisor) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2020