Matching Items (8)

135168-Thumbnail Image.png

From Pedometers to Giving Sight to the Blind: Market Research for Wearable Electronics

Description

How can we change what it means to be a human? Products can be used that will allow for near-instantaneous communication with one’s friends and family wherever they are: and

How can we change what it means to be a human? Products can be used that will allow for near-instantaneous communication with one’s friends and family wherever they are: and the newest devices do not have to be even carried around, as they can be worn instead. Wearable electronics are quickly becoming very popular, with 232.0 million wearable devices sold in 2015. This report provides an overview of current and developing wearable devices, investigates the characteristics of the average buyer for these different types of devices. Finally, marketing strategies are suggested. This work was completed in conjunction with a capstone project with Intel, where three objectives were achieved: First, a universal strain tester that could strain samples cyclically in a manner similar to the body was designed. This equipment was especially designed to be flexible in the testing conditions it could be exposed to, so samples could be tested at elevated temperatures or even underwater. Next, dogbone shaped samples for the testing of Young’s Modulus and elongation to failure were produced, and the cut quality of laser, water-jet, and die-cutting was compared in order to select the most defect-free method for reliable testing. Polydimethylsiloxane (PDMS) is a fantastic candidate material for wearable electronics, however there is some discrepancies in the literature—such as from Eleni et. al—about the impact of ultraviolet radiation on the mechanical properties. By conducting accelerated aging tests simulating up to five years exposure to the sun, it was determined that ultraviolet-induced cross-linking of the polymer chains does occur, leading to severe embrittlement (strain to failure reduced from 3.27 to 0.06 in some cases, reduction to approximately 0.21 on average). As simulated tests of possible usage conditions required strains of at least 0.50-0.70, a variety of solutions were suggested to reduce this embrittlement. This project can lead to standardization of wearables electronics testing methods for more reliable predictions about the device behavior, whether that device is a simple pedometer or something that allows the visually impaired to “see”, such as Toyota’s Blaid.

Contributors

Agent

Created

Date Created
  • 2016-05

Human Neural Progenitor Cell Adhesion on PDMS Substrates

Description

Abstract
The aim of the research performed was to increase research potential in the field of cell stimulation by developing a method to adhere human neural progenitor cells (hNPC’s) to

Abstract
The aim of the research performed was to increase research potential in the field of cell stimulation by developing a method to adhere human neural progenitor cells (hNPC’s) to a sterilized stretchable microelectrode array (SMEA). The two primary objectives of our research were to develop methods of sterilizing the polydimethylsiloxane (PDMS) substrate being used for the SMEA, and to derive a functional procedure for adhering hNPC’s to the PDMS. The proven method of sterilization was to plasma treat the sample and then soak it in 70% ethanol for one hour. The most successful method for cell adhesion was plasma treating the PDMS, followed by treating the surface of the PDMS with 0.01 mg/mL poly-l-lysine (PLL) and 3 µg/cm2 laminin. The development of these methods was an iterative process; as the methods were tested, any problems found with the method were corrected for the next round of testing until a final method was confirmed. Moving forward, the findings will allow for cell behavior to be researched in a unique fashion to better understand the response of adherent cells to physical stimulation by measuring changes in their electrical activity.

Contributors

Agent

Created

Date Created
  • 2016-05

137034-Thumbnail Image.png

Synthesis and Characterization of Thin Supported PDMS/ZIF-71 Films for Pervaporative Biofuel Recovery

Description

The recovery of biofuels permits renewable alternatives to present day fossil fuels that cause devastating effects on the planet. Pervaporation is a separation process that shows promise for the separation

The recovery of biofuels permits renewable alternatives to present day fossil fuels that cause devastating effects on the planet. Pervaporation is a separation process that shows promise for the separation of ethanol from biologically fermentation broths. The performance of thin film composite membranes of polydimethylsiloxane (PDMS) and zeolite imidazolate frameworks (ZIF-71) dip coated onto a porous substrate are analyzed. Pervaporation performance factors of flux, separation factor and selectivity are measured for varying ZIF-71 loadings of pure PDMS, 5 wt%, 12.5 wt% and 25 wt% at 60 oC with a 2 wt% ethanol/water feed. The increase in ZIF-71 loadings increased the performance of PDMS to produce higher flux, higher separation factor and high selectivity than pure polymeric films.

Contributors

Agent

Created

Date Created
  • 2014-05

137570-Thumbnail Image.png

Buckling Phenomenon in Pre-Stretched PDMS Substrates

Description

The data and results presented in this paper are part of a continuing effort to innovate and pioneer the future of engineering. The purpose of the following is to demonstrate

The data and results presented in this paper are part of a continuing effort to innovate and pioneer the future of engineering. The purpose of the following is to demonstrate the mechanical buckling characteristics in stiff thin film and soft substrate systems, and the importance of controlling them. In today's engineering research, wrinkling in systems in beginning to be viewed as a means for engineering innovation rather than failure. This research is important to further progress the possible applications the technology proposes, such as flexible electronics and tunable adhesives. This work utilizes a cost efficient and relatively easy method for generating and analyzing buckled systems. Ultra violate oxidation at ambient temperatures is exploited to create a stiff thin surface on rubber like polydimethylsiloxane, and couple with strain induction wrinkles are generated. Wrinkle characteristics such as amplitude, wavelengths and wetting properties were investigated. In simple cases, trends were confirmed that increased oxidation relates to increased buckle wavelengths, and increase in strain corresponds to a decrease in wavelength. Hierarchical buckles were produced in one-dimensional systems treated with a multi-step method; these were the first to be generated in the ASU labs. Unique topographic changes were produced in two-dimensional systems treated with the same method. Honeycomb or dome like structures were noted to occur, important as they undergo a different energy-reliving configuration compared to traditional parallel buckles. The information provided characterizes many aspects of the buckle phenomena and will allow for further inquiry into specific functions utilizing the technology to continue advancements in engineering.

Contributors

Agent

Created

Date Created
  • 2013-05

An experimental investigation of capillary driven flow in open rectangular channels: a method to create PDMS microfilaments for pN scale force measurements

Description

The flow of liquid PDMS (10:1 v/v base to cross-linker ratio) in open, rectangular silicon micro channels, with and without a hexa-methyl-di-silazane (HMDS) or poly-tetra-fluoro-ethylene (PTFE) (120 nm) coat, was

The flow of liquid PDMS (10:1 v/v base to cross-linker ratio) in open, rectangular silicon micro channels, with and without a hexa-methyl-di-silazane (HMDS) or poly-tetra-fluoro-ethylene (PTFE) (120 nm) coat, was studied. Photolithographic patterning and etching of silicon wafers was used to create micro channels with a range of widths (5-50 μm) and depths (5-20 μm). The experimental PDMS flow rates were compared to an analytical model based on the work of Lucas and Washburn. The experimental flow rates closely matched the predicted flow rates for channels with an aspect ratio (width to depth), p, between one and two. Flow rates in channels with p less than one were higher than predicted whereas the opposite was true for channels with p greater than two. The divergence between the experimental and predicted flow rates steadily increased with increasing p. These findings are rationalized in terms of the effect of channel dimensions on the front and top meniscus morphology and the possible deviation from the no-slip condition at the channel walls at high shear rates.

In addition, a preliminary experimental setup for calibration tests on ultrasensitive PDMS cantilever beams is reported. One loading and unloading cycle is completed on a microcantilever PDMS beam (theoretical stiffness 0.5 pN/ µm). Beam deflections are actuated by adjusting the buoyancy force on the beam, which is submerged in water, by the addition of heat. The expected loading and unloading curve is produced, albeit with significant noise. The experimental results indicate that the beam stiffness is a factor of six larger than predicted theoretically. One probable explanation is that the beam geometry may change when it is removed from the channel after curing, making assumptions about the beam geometry used in the theoretical analysis inaccurate. This theory is bolstered by experimental data discussed in the report. Other sources of error which could partially contribute to the divergent results are discussed. Improvements to the experimental setup for future work are suggested.

Contributors

Agent

Created

Date Created
  • 2014

154700-Thumbnail Image.png

A friction and adhesion characterization setup for extreme temperatures

Description

It is well known that the geckos can cling to almost any surface using highly dense micro
ano fibrils found on the feet that rely on Van Der Waals forces

It is well known that the geckos can cling to almost any surface using highly dense micro
ano fibrils found on the feet that rely on Van Der Waals forces to adhere. A few experimental and theoretical approaches have been taken to understand the adhesion mechanism of gecko feet. This work explains the building procedure of custom experimental setup to test the adhesion force over a temperature range and extends its application in space environment, potentially unsafe working condition.

This study demonstrates that these adhesive capable of switching adhesive properties not only at room environment but also over a temperature range of -160 degC to 120 degC in vacuum conditions. These conditions are similar to the condition experienced by a satellite in a space orbiting around the earth. Also, this study demonstrated various detachment and specimen patch preparation methods. The custom-made experimental setup for adhesion test can measure adhesion force in temperature and pressure controlled environment over specimen size of 1 sq. inch. A cryogenic cooling system with liquid nitrogen is used to achieve -160 degC and an electric resistive heating system are used to achieve 120 degC in controlled volume. Thermal electrodes, infrared thermopile detectors are used to record temperature at sample and pressure indicator to record vacuum condition in controlled volume. Reversibility of the switching behaviour of the specimen in controlled environment confirms its application in space and very high or very low-temperature conditions.

The experimental setup was developed using SolidWorks as a design tool, Ansys as simulation tool and the data acquisition utilizes LabVIEW available in the market today.

Contributors

Agent

Created

Date Created
  • 2016

152125-Thumbnail Image.png

Surface characterization of an organized titanium dioxide Layer

Description

Soft lithographic printing techniques can be used to control the surface morphology of titanium dioxide layers on length scales of several hundred nanometers. Controlling surface morphology and volumetric organization of

Soft lithographic printing techniques can be used to control the surface morphology of titanium dioxide layers on length scales of several hundred nanometers. Controlling surface morphology and volumetric organization of titanium dioxide electrodes can potentially be used in dye-sensitized solar cell devices. This thesis explores how layer-by-layer replication can lead to well defined, dimensionally controlled volumes and details how these control mechanisms influence surface characteristics of the semiconducting oxide.

Contributors

Agent

Created

Date Created
  • 2013

156050-Thumbnail Image.png

Synthesis and characterization of ZIF-71/PDMS membranes for biofuel separation

Description

Membranes are a key part of pervaporation processes, which is generally a more

efficient process for selective removal of alcohol from water than distillation. It is

necessary that the membranes have high

Membranes are a key part of pervaporation processes, which is generally a more

efficient process for selective removal of alcohol from water than distillation. It is

necessary that the membranes have high alcohol permeabilities and selectivities.

Polydimethylsiloxane (PDMS) based mixed matrix membranes (MMMs) have

demonstrated very promising results. Zeolitic imidazolate framework-71 (ZIF-71)

demonstrated promising alcohol separation abilities. In this dissertation, we present

fundamental studies on the synthesis of ZIF-71/PDMS MMMs.

Free-standing ZIF-71/ PDMS membranes with 0, 5, 25 and 40 wt % ZIF-71

loadings were prepared and the pervaporation separation for ethanol and 1-butanol from

water was measured. ZIF-71/PDMS MMMs were formed through addition cure and

condensation cure methods. Addition cure method was not compatible with ZIF-71

resulting in membranes with poor mechanical properties, while the condensation cure

method resulted in membranes with good mechanical properties. The 40 wt % ZIF-71

loading PDMS nanocomposite membranes achieved a maximum ethanol/water selectivity

of 0.81 ± 0.04 selectivity and maximum 1-butnaol/water selectivity of 5.64 ± 0.15.

The effects of synthesis time, temperature, and reactant ratio on ZIF-71 particle

size and the effect of particle size on membrane performance were studied. Temperature

had the greatest effect on ZIF-71 particle size as the synthesis temperature varied from -

20 to 35 ºC. The ZIF-71 synthesized had particle diameters ranging from 150 nm to 1

μm. ZIF-71 particle size is critical in ZIF-71/PDMS composite membrane performance

for alcohol removal from water through pervaporation. The membranes made with

micron sized ZIF-71 particles showed higher alcohol/water selectivity than those with

smaller particles. Both alcohol and water permeability increased when larger sized ZIF-

71 particles were incorporated.

ZIF-71 particles were modified with four ligands through solvent assisted linker

exchange (SALE) method: benzimidazole (BIM), 5-methylbenzimidazole (MBIM), 5,6-

dimethylbenzimidazole (DMBIM) and 4-Phenylimidazole (PI). The morphology of ZIF-

71 were maintained after the modification. ZIF-71/PDMS composite membranes with 25

wt% loading modified ZIF-71 particles were made for alcohol/water separation. Better

particle dispersion in PDMS polymer matrix was observed with the ligand modified ZIFs.

For both ethanol/water and 1-butanol/water separations, the alcohol permeability and

alcohol/water selectivity were lowered after the ZIF-71 ligand exchange reaction.

Contributors

Agent

Created

Date Created
  • 2017