Matching Items (4)

135135-Thumbnail Image.png

Exploring nuclease resistance and biological stability of threose nucleic acid

Description

Nucleic acid polymers have numerous applications in both therapeutics and research to control gene expression and bind biologically relevant targets. However, due to poor biological stability their clinical applications are

Nucleic acid polymers have numerous applications in both therapeutics and research to control gene expression and bind biologically relevant targets. However, due to poor biological stability their clinical applications are limited. Chemical modifications can improve both intracellular and extracellular stability and enhance resistance to nuclease degradation. To identify a potential candidate for a highly stable synthetic nucleic acid, the biostability of α-L-threofuranosyl nucleic acid (TNA) was evaluated under simulated biological conditions. TNA contains a four-carbon sugar and is linked by 2’, 3’ phosphodiester bonds. We hypothesized that this distinct chemical structure would yield greater nuclease resistance in human serum and human liver microsomes, which were selected as biologically relevant nuclease conditions. We found that TNA oligonucleotides remained undigested for 7 days in these conditions. In addition, TNA/DNA heteropolymers and TNA/RNA oligonucleotide duplexes displayed nuclease resistance, suggesting that TNA has a protective effect over DNA and RNA. In conclusion TNA demonstrates potential as a viable synthetic nucleic acid for use in numerous clinical and therapeutic applications.

Contributors

Agent

Created

Date Created
  • 2016-12

137025-Thumbnail Image.png

7-deaza-dG Promotes the Faithful Transcription of 4 Nucleotide TNA Polymers

Description

DNA is a natural genetic polymer capable of storing and preserving genetic information in biological systems. Due to its natural information storage capacity, recent scientific progress demonstrates that DNA has

DNA is a natural genetic polymer capable of storing and preserving genetic information in biological systems. Due to its natural information storage capacity, recent scientific progress demonstrates that DNA has the potential to exceed standard information storage technologies. However, DNA is limited in its information storage capacities due to its susceptibility to degradation in the presence of naturally occurring nucleases. Threose nucleic acid (TNA), an unnatural genetic polymer with a 3'->2'phosphodiester-linked threose sugar backbone, has promising potential to overcome this limitation. TNA is not a substrate for natural nucleases and thus shows a dramatic increase in stability compared to DNA. However, TNA transcription has a tendency to generate G:G mispairs and lead to a gradual loss of information within the template. It was hypothesized that the mutation occurs through a G:G Hoogsteen base pair that forms preferentially over the canonical G:C Watson-Crick base pair. Incorporation of 7-deaza-dG into a four letter template effectively eliminated G:G mispairings and improved the replication fidelity from 60% to 99.6% with only four errors in a thousand. These results have laid the groundwork for further research to increase the length of the TNA product synthesized and to test TNA's ability to store genetic information.

Contributors

Agent

Created

Date Created
  • 2014-05

151693-Thumbnail Image.png

Development of an artificial genetic system capable of Darwinian evolution

Description

The principle of Darwinian evolution has been applied in the laboratory to nucleic acid molecules since 1990, and led to the emergence of in vitro evolution technique. The methodology of

The principle of Darwinian evolution has been applied in the laboratory to nucleic acid molecules since 1990, and led to the emergence of in vitro evolution technique. The methodology of in vitro evolution surveys a large number of different molecules simultaneously for a pre-defined chemical property, and enrich for molecules with the particular property. DNA and RNA sequences with versatile functions have been identified by in vitro selection experiments, but many basic questions remain to be answered about how these molecules achieve their functions. This dissertation first focuses on addressing a fundamental question regarding the molecular recognition properties of in vitro selected DNA sequences, namely whether negatively charged DNA sequences can be evolved to bind alkaline proteins with high specificity. We showed that DNA binders could be made, through carefully designed stringent in vitro selection, to discriminate different alkaline proteins. The focus of this dissertation is then shifted to in vitro evolution of an artificial genetic polymer called threose nucleic acid (TNA). TNA has been considered a potential RNA progenitor during early evolution of life on Earth. However, further experimental evidence to support TNA as a primordial genetic material is lacking. In this dissertation we demonstrated the capacity of TNA to form stable tertiary structure with specific ligand binding property, which suggests a possible role of TNA as a pre-RNA genetic polymer. Additionally, we discussed the challenges in in vitro evolution for TNA enzymes and developed the necessary methodology for future TNA enzyme evolution.

Contributors

Agent

Created

Date Created
  • 2013

154018-Thumbnail Image.png

Developing engineered polymerases for practical applications in synthetic biology

Description

Advances in chemical synthesis have enabled new lines of research with unnatural genetic polymers whose modified bases or sugar-phosphate backbones have potential therapeutic and biotechnological applications. Maximizing the potential of

Advances in chemical synthesis have enabled new lines of research with unnatural genetic polymers whose modified bases or sugar-phosphate backbones have potential therapeutic and biotechnological applications. Maximizing the potential of these synthetic genetic systems requires inventing new molecular biology tools that can both generate and faithfully replicate unnatural polymers of significant length. Threose nucleic acid (TNA) has received significant attention as a complete replication system has been developed by engineering natural polymerases to broaden their substrate specificity. The system, however, suffers from a high mutational load reducing its utility. This thesis will cover the development of two new polymerases capable of transcribing and reverse transcribing TNA polymers with high efficiency and fidelity. The polymerases are identified using a new strategy wherein gain-of-function mutations are sampled in homologous protein architectures leading to subtle optimization of protein function. The new replication system has a fidelity that supports the propagation of genetic information enabling in vitro selection of functional TNA molecules. TNA aptamers to human alpha-thrombin are identified and demonstrated to have superior stability compared to DNA and RNA in biologically relevant conditions. This is the first demonstration that functional TNA molecules have potential in biotechnology and molecular medicine.

Contributors

Agent

Created

Date Created
  • 2015