Matching Items (3)
154000-Thumbnail Image.png
Description
In mesoscopic physics, conductance fluctuations are a quantum interference phenomenon that comes from the phase interference of electron wave functions scattered by the impurity disorder. During the past few decades, conductance fluctuations have been studied in various materials including metals, semiconductors and graphene. Since the patterns of conductance fluctuations is

In mesoscopic physics, conductance fluctuations are a quantum interference phenomenon that comes from the phase interference of electron wave functions scattered by the impurity disorder. During the past few decades, conductance fluctuations have been studied in various materials including metals, semiconductors and graphene. Since the patterns of conductance fluctuations is related to the distributions and configurations of the impurity scatterers, each sample has its unique pattern of fluctuations, which is considered as a sample fingerprint. Thus, research on conductance fluctuations attracts attention worldwide for its importance in both fundamental physics and potential technical applications. Since early experimental measurements of conductance fluctuations showed that the amplitudes of the fluctuations are on order of a universal value (e2/h), theorists proposed the hypothesis of ergodicity, e.g. the amplitudes of the conductance fluctuations by varying impurity configurations is the same as that from varying the Fermi energy or varying the magnetic field. They also proposed the principle of universality; e.g., that the observed fluctuations would appear the same in all materials. Recently, transport experiments in graphene reveal a deviation of fluctuation amplitudes from those expected from ergodicity.

Thus, in my thesis work, I have carried out numerical research on the conductance fluctuations in GaAs nanowires and graphene nanoribbons in order to examine whether or not the theoretical principles of universality and ergodicity hold. Finite difference methods are employed to study the conductance fluctuations in GaAs nanowires, but an atomic basis tight-binding model is used in calculations of graphene nanoribbons. Both short-range disorder and long-range disorder are considered in the simulations of graphene. A stabilized recursive scattering matrix technique is used to calculate the conductance. In particular, the dependence of the observed fluctuations on the amplitude of the disorder has been investigated. Finally, the root-mean-square values of the amplitude of conductance fluctuations are calculated as a basis with which to draw the appropriate conclusions. The results for Fermi energy sweeps and magnetic field sweeps are compared and effects of magnetic fields on the conductance fluctuations of Fermi energy sweeps are discussed for both GaAs nanowires and graphene nanoribbons.
ContributorsLiu, Bobo (Author) / Ferry, David K. (Thesis advisor) / Akis, Richard (Committee member) / Saraniti, Marco (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2015
135077-Thumbnail Image.png
Description
The objective of this study was to examine the universality of three coarticulatory processes: glide epenthesis, stop epenthesis, and intervocalic voicing of stops. Five contrastive languages were selected to test these processes. These languages included English, Spanish, Mandarin, Arabic, and Navajo. All languages varied in phonemic inventory, stress patterns, phonological

The objective of this study was to examine the universality of three coarticulatory processes: glide epenthesis, stop epenthesis, and intervocalic voicing of stops. Five contrastive languages were selected to test these processes. These languages included English, Spanish, Mandarin, Arabic, and Navajo. All languages varied in phonemic inventory, stress patterns, phonological processes, and syllabic constructs. 16 participants were selected with relatively limited English exposure based on questionnaire responses regarding their language history. The participants went through a series of trainings and tasks to elicit these coarticulatory processes in several phonemic contexts. Part 1 of the study attempted to elicit the processes solely through imitation, while Part 2 attempted to do so through a spontaneous elicitation task. Although the results indicated that a universal use of these processes was not supported, the data suggested that glide epenthesis played a frequent role within English, Spanish, and Arabic. This was expected since glides are often used in the presence of diphthongs in these languages. Additionally, intervocalic voicing of stops was observed in English and Spanish, suggesting a language specific tendency. However, it was only noted when the voiceless stop occurred in the coda of the syllable and not in the onset of the syllable. Lastly, the use of stop epenthesis was not observed in any of the languages tested.
ContributorsVasquez, Dominique Jagelka (Author) / Weinhold, Juliet (Thesis director) / Ingram, David (Committee member) / Department of Speech and Hearing Science (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
158553-Thumbnail Image.png
Description
Universal biology is an important astrobiological concept, specifically for the search for life beyond Earth. Over 1.2 million species have been identified on Earth, yet all life partakes in certain processes, such as homeostasis and replication. Furthermore, several aspects of biochemistry on Earth are thought to be universal, such as

Universal biology is an important astrobiological concept, specifically for the search for life beyond Earth. Over 1.2 million species have been identified on Earth, yet all life partakes in certain processes, such as homeostasis and replication. Furthermore, several aspects of biochemistry on Earth are thought to be universal, such as the use of organic macromolecules like proteins and nucleic acids. The presence of many biochemical features in empirical data, however, has never been thoroughly investigated. Moreover, the ability to generalize universal features of Earth biology to other worlds suffers from the epistemic problem of induction. Systems biology approaches offer means to quantify abstract patterns in living systems which can more readily be extended beyond Earth’s familiar planetary context. In particular, scaling laws, which characterize how a system responds to changes in size, have met with prior success in investigating universal biology.

This thesis rigorously tests the hypothesis that biochemistry is universal across life on Earth. The study collects enzyme data for annotated archaeal, bacterial, and eukaryotic genomes, in addition to metagenomes. This approach allows one to quantitatively define a biochemical system and sample across known biochemical diversity, while simultaneously exploring enzyme class scaling at both the level of both individual organisms and ecosystems. Using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the Joint Genome Institute’s Integrated Microbial Genomes and Microbiomes (JGI IMG/M) database, this thesis performs the largest comparative analysis of microbial enzyme content and biochemistry to date. In doing so, this thesis quantitatively explores the distribution of enzyme classes on Earth and adds constraints to notions of universal biochemistry on Earth.
ContributorsGagler, Dylan (Author) / Walker, Sara I (Thesis advisor) / Kempes, Chris (Committee member) / Trembath-Reichert, Elizabeth (Committee member) / Arizona State University (Publisher)
Created2020