Matching Items (2)
Filtering by

Clear all filters

153191-Thumbnail Image.png
Description
Although tremor, rigidity, and bradykinesia are cardinal symptoms of Parkinson's disease (PD), impairments of gait and balance significantly affect quality of life, especially as the disease progresses, and do not respond well to anti-parkinsonism medications. Many studies have shown that people with PD can walk better when appropriate cues are

Although tremor, rigidity, and bradykinesia are cardinal symptoms of Parkinson's disease (PD), impairments of gait and balance significantly affect quality of life, especially as the disease progresses, and do not respond well to anti-parkinsonism medications. Many studies have shown that people with PD can walk better when appropriate cues are presented but, to the best of our knowledge, the effects of real-time feedback of step length and uprightness of posture on gait and posture have not been specifically investigated. If it can be demonstrated that real-time feedback can improve posture and gait, the resultant knowledge could be used to design effective rehabilitation strategies to improve quality of life in this population.

In this feasibility study, we have developed a treadmill-based experimental paradigm to provide feedback of step length and upright posture in real-time. Ten subjects (mean age 65.9 ± 7.6 years) with mild to moderate PD (Hoehn and Yahr stage III or below) were evaluated in their ability to successfully utilize real-time feedback presented during quiet standing and treadmill walking tasks during a single data collection session in their medication-on state. During quiet standing tasks in which back angle feedback was provided, subjects were asked to utilize the feedback to maintain upright posture. During treadmill walking tasks, subjects walked at their self-selected speed for five minutes without feedback, with feedback of back angle, or with feedback of step length. During walking tasks with back angle feedback, subjects were asked to utilize the feedback to maintain upright posture. During walking tasks with step length feedback, subjects were asked to utilize the feedback to walk with increased step length. During quiet standing tasks, measurements of back angle were obtained; during walking tasks, measurements of back angle, step length, and step time were obtained.

Subjects stood and walked with significantly increased upright posture during the tasks with real-time back angle feedback compared to tasks without feedback. Similarly, subjects walked with significantly increased step length during tasks with real-time step length feedback compared to tasks without feedback. These results demonstrate that people with PD can utilize real-time feedback to improve upright posture and gait.
ContributorsJellish, Jeremy (Author) / Abbas, James (Thesis advisor) / Krishnamurthi, Narayanan (Thesis advisor) / Ingalls, Todd (Committee member) / Arizona State University (Publisher)
Created2014
154603-Thumbnail Image.png
Description
The increased risk of falling and the worse ability to perform other daily physical activities in the elderly cause concern about monitoring and correcting basic everyday movement. In this thesis, a Kinect-based system was designed to assess one of the most important factors in balance control of human body when

The increased risk of falling and the worse ability to perform other daily physical activities in the elderly cause concern about monitoring and correcting basic everyday movement. In this thesis, a Kinect-based system was designed to assess one of the most important factors in balance control of human body when doing Sit-to-Stand (STS) movement: the postural symmetry in mediolateral direction. A symmetry score, calculated by the data obtained from a Kinect RGB-D camera, was proposed to reflect the mediolateral postural symmetry degree and was used to drive a real-time audio feedback designed in MAX/MSP to help users adjust themselves to perform their movement in a more symmetrical way during STS. The symmetry score was verified by calculating the Spearman correlation coefficient with the data obtained from Inertial Measurement Unit (IMU) sensor and got an average value at 0.732. Five healthy adults, four males and one female, with normal balance abilities and with no musculoskeletal disorders, were selected to participate in the experiment and the results showed that the low-cost Kinect-based system has the potential to train users to perform a more symmetrical movement in mediolateral direction during STS movement.
ContributorsZhou, Henghao (Author) / Turaga, Pavan (Thesis advisor) / Ingalls, Todd (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2016