Matching Items (2)
Filtering by

Clear all filters

158014-Thumbnail Image.png
Description
The interior of Earth is stratified due to gravity. Therefore, the lateral heterogeneities observed as seismic anomalies by seismologists are extremely interesting: they hold the key to understand the composition, thermal status and evolution of the Earth. This work investigates seismic anomalies inside Earth’s lowermost mantle and focuses on patch-like

The interior of Earth is stratified due to gravity. Therefore, the lateral heterogeneities observed as seismic anomalies by seismologists are extremely interesting: they hold the key to understand the composition, thermal status and evolution of the Earth. This work investigates seismic anomalies inside Earth’s lowermost mantle and focuses on patch-like ultra-low velocity zones (ULVZs) found on Earth’s core-mantle boundary (CMB). Firstly, all previous ULVZ studies are compiled and ULVZ locations on the CMB are digitized. The result is a database, which is publicly available online. A key finding is that there is not a simple mapping between the locations of the observed ULVZs and the large low velocities provinces (LLVPs). Instead, ULVZs are more likely to occur near LLVP boundaries. This spatial correlation study supports a compositionally distinct origin for at least some ULVZs. Next, the seismic structure of the basal mantle beneath the Central America is investigated. This region hosts present and past subducted slabs, which could have brought compositionally distinct oceanic basalt all the way down to the CMB. The waveform distortions of a core-reflected seismic phase and a forward modeling method are used to constrain the causes of the CMB structures. In addition to ULVZ structures, isolated patches of thin zones with shear velocity increased by over 10% relative to background mantle are found for the first time. Ultra-high velocity zones (UHVZs) are interspersed with ULVZs and could be caused by subducted mid-ocean ridge basalt (MORB) that undergoes partial melting and melt segregation. Fe-rich partial melt of MORB can form ULVZs, and silica polymorphs (SiO2) and calcium-perovskite (CaPv) rich solid residue can explain the UHVZs. Finally, large-scale heterogeneities in the lowermost mantle are investigated using S waveform broadening observations. Several basal layer models are case-studied via synthetic calculations. S wave arrivals received at a distance larger than 80˚ in a global dataset from large earthquakes between the years 1994 and 2017 are examined and S waveform broadenings are documented. This approach exploits large distance data for the first time, and therefore is complementary to previous studies in terms of sampling locations. One possible explanation of S waveform broadening is velocity discontinuity inside the D″ layer due to the temperature controlled Bm-pPv phase transition.
ContributorsYu, Shule (Author) / Garnero, Edward J (Thesis advisor) / Li, Mingming (Committee member) / Shim, Sang-Heon (Committee member) / Tyburczy, James A. (Committee member) / Till, Christy B. (Committee member) / Arizona State University (Publisher)
Created2020
157625-Thumbnail Image.png
Description
This research investigates the fine scale structure in Earth's mantle, especially for the lowermost mantle, where strong heterogeneity exists. Recent seismic tomography models have resolved large-scale features in the lower mantle, such as the large low shear velocity provinces (LLSVPs). However, differences are present between different models, especially at shorter

This research investigates the fine scale structure in Earth's mantle, especially for the lowermost mantle, where strong heterogeneity exists. Recent seismic tomography models have resolved large-scale features in the lower mantle, such as the large low shear velocity provinces (LLSVPs). However, differences are present between different models, especially at shorter length scales. Fine scale structures both within and outside LLSVPs are still poorly constrained. The drastic growth of global seismic networks presents densely sampled seismic data in unprecedented quality and quantity. In this work, the Empirical Wavelet construction method has been developed to document seismic travel time and waveform information for a global shear wave seismic dataset. A dataset of 250K high-quality seismic records with comprehensive measurements is documented and made publicly available. To more accurately classify high quality seismic signal from the noise, 1.4 million manually labeled seismic records have been used to train a supervised classification model. The constructed model performed better than the empirical model deployed in the Empirical Wavelet method, with 87% in precision and 83% in recall. To utilize lower amplitude phases such as higher multiples of S and ScS waves, we have developed a geographic bin stacking method to improve signal-to-noise ratio. It is then applied to Sn waves up to n=6 and ScSn wave up to n=5 for both minor and major arc phases. The virtual stations constructed provide unique path sampling and coverage, vastly improving sampling in the Southern Hemisphere. With the high-quality dataset we have gathered, ray-based layer stripping iterative forward tomography is implemented to update a starting tomography model by mapping the travel time residuals along the ray from the surface down to the core mantle boundary. Final updated models with different starting tomography models show consistent updates, suggesting a convergent solution. The final updated models show higher resolution results than the starting tomography models, especially on intermediate-scale structures. The combined analyses and results in this work provide new tools and new datasets to image the fine-scale heterogeneous structures in the lower mantle, which advances our understanding of the dynamics and evolution of the Earth's mantle.
ContributorsLai, Hongyu (Author) / Garnero, Edward J (Thesis advisor) / Till, Christy B. (Committee member) / Shim, Sang-Heon (Committee member) / Li, Mingming (Committee member) / Tyburczy, James (Committee member) / Arizona State University (Publisher)
Created2019