Matching Items (4)
Filtering by

Clear all filters

151710-Thumbnail Image.png
Description
In this thesis I model the thermal and structural evolution of Kuiper Belt Objects (KBOs) and explore their ability to retain undifferentiated crusts of rock and ice over geologic timescales. Previous calculations by Desch et al. (2009) predicted that initially homogenous KBOs comparable in size to Charon (R ~ 600

In this thesis I model the thermal and structural evolution of Kuiper Belt Objects (KBOs) and explore their ability to retain undifferentiated crusts of rock and ice over geologic timescales. Previous calculations by Desch et al. (2009) predicted that initially homogenous KBOs comparable in size to Charon (R ~ 600 km) have surfaces too cold to permit the separation of rock and ice, and should always retain thick (~ 85 km) crusts, despite the partial differentiation of rock and ice inside the body. The retention of a thermally insulating, undifferentiated crust is favorable to the maintenance of subsurface liquid and potentially cryovolcanism on the KBO surface. A potential objection to these models is that the dense crust of rock and ice overlying an ice mantle represents a gravitationally unstable configuration that should overturn by Rayleigh-Taylor (RT) instabilities. I have calculated the growth rate of RT instabilities at the ice-crust interface, including the effect of rock on the viscosity. I have identified a critical ice viscosity for the instability to grow significantly over the age of the solar system. I have calculated the viscosity as a function of temperature for conditions relevant to marginal instability. I find that RT instabilities on a Charon-sized KBO require temperatures T > 143 K. Including this effect in thermal evolution models of KBOs, I find that the undifferentiated crust on KBOs is thinner than previously calculated, only ~ 50 km. While thinner, this crustal thickness is still significant, representing ~ 25% of the KBO mass, and helps to maintain subsurface liquid throughout most of the KBO's history.
ContributorsRubin, Mark (Author) / Desch, Steven J (Thesis advisor) / Sharp, Thomas (Committee member) / Christensen, Philip R. (Philip Russel) (Committee member) / Arizona State University (Publisher)
Created2013
Description

Although nitrogen is the dominant element in Earth’s atmosphere, it is depleted in the bulk silicate Earth (relative to expected volatile abundances established by carbonaceous chondrites). To resolve this inconsistency, it has been hypothesized that this “missing nitrogen” may actually be stored within the Earth’s deep interior. In this work,

Although nitrogen is the dominant element in Earth’s atmosphere, it is depleted in the bulk silicate Earth (relative to expected volatile abundances established by carbonaceous chondrites). To resolve this inconsistency, it has been hypothesized that this “missing nitrogen” may actually be stored within the Earth’s deep interior. In this work, we use multi-anvil press experiments to synthesize solid solution mixtures of the mantle transition zone mineral wadsleyite (Mg2SiO4) and silicon nitride (Si3N4). Successful synthesis of a 90% Si3N4, 10% Mg2SiO4 solid solution implies that nitrogen may not be sequestered within the most abundant mineral phases in the Earth’s mantle. Instead, nitrogen-rich accessory phases may hold the key to studying nitrogen storage within the deep interior. Ultimately, quantifying the amount of nitrogen within the mantle will further our understanding of the N cycle, which is vital to maintaining planetary habitability. Similar N cycling processes may be occurring on other rocky bodies; therefore, studying nitrogen storage may be an important part of determining habitability conditions on other worlds, both within in our solar system and beyond.

ContributorsRavikumar, Shradhanjli (Author) / Shim, Dan (Thesis director) / Sharp, Thomas (Committee member) / Hervig, Richard (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor)
Created2023-05
171746-Thumbnail Image.png
Description
Subsolidus convection in the mantle of Earth is the driving mechanism behind plate tectonics and provides a central framework linking geophysical, geochemical, petrological, hydrological, and biological processes within the system. Seismic observations have revealed mantle heterogeneities in wide-ranging scales from less than tens of to thousands of kilometers. Understanding the

Subsolidus convection in the mantle of Earth is the driving mechanism behind plate tectonics and provides a central framework linking geophysical, geochemical, petrological, hydrological, and biological processes within the system. Seismic observations have revealed mantle heterogeneities in wide-ranging scales from less than tens of to thousands of kilometers. Understanding the origins and dynamics of these anomalies is critical to advance our knowledge on how mantle convection operates and coevolves with the surface system. This dissertation attempts to constrain the past, present and future of mantle dynamics with lines of evidence from seismology, geodynamics, petrology, geochemistry, and astrophysics. Above Earth’s core, two continent-sized large low shear velocity provinces (LLSVPs) beneath Africa and the Pacific Ocean were seismically detected decades ago. Yet their origin, composition, detailed morphology and influence over mantle convection remain elusive. First, I propose the two LLSVPs may represent the mantle remnants of the Moon-forming impactor Theia. I show that the mantle of Theia is intrinsically denser than Earth’s mantle and would have sunk and accumulated into LLSVP-like structures in the deepest mantle after 4.5 billion years. Second, I examined the maximum height of the two LLSVPs and determined that the African LLSVP is ~1,000 km higher than the Pacific counterpart. Using geodynamic simulations, I find the height of a stable LLSVP is mainly controlled by its density and the ambient mantle viscosity. With ~1,000 numerical experiments, I conclude that the origin of the great height difference between the LLSVPs is that the African LLSVP is less dense, and thus less stable than the Pacific LLSVP. Next, I numerically identified another dynamic scenario accounting for the vastly different height of the two LLSVPs, which is caused by catastrophic sinking of accumulated subducted slabs at the 660-km boundary. Last, targeting one ancient carbonatite above the African LLSVP, I show that lithium isotopes in humite measured by nanoscale secondary ion mass spectrometry was able to uncover the signature of a subducted oceanic crust in its magma source, which may return from the interior to the surface by mantle plumes.
ContributorsYuan, Qian (Author) / Li, Mingming (Thesis advisor) / Garnero, Edward (Committee member) / Shim, Sang-Heon (Committee member) / Hervig, Richard (Committee member) / Bose, Maitrayee (Committee member) / Arizona State University (Publisher)
Created2022
161753-Thumbnail Image.png
Description
The redox conditions of Earth have been changing since proto-Earth’s accretion from the solar nebula. These changes have influenced the distribution and partitioning of volatile elements between the atmosphere and the mantle (Righter et al., 2020; Stagno and Fei, 2020. Though oxygen fugacity fO2 is arguably not the main

The redox conditions of Earth have been changing since proto-Earth’s accretion from the solar nebula. These changes have influenced the distribution and partitioning of volatile elements between the atmosphere and the mantle (Righter et al., 2020; Stagno and Fei, 2020. Though oxygen fugacity fO2 is arguably not the main factor for phase stability at certain pressure-temperature conditions (McCammon, 2005), it can influence which phases are stable, especially within a closed system such as the ones presented in this study. Despite the importance of controlling fO2 for interpreting the history of planetary bodies, there have been no methods to control the redox conditions in the laser-heated diamond anvil cell (LHDAC). This thesis has examined the feasibility for controlling redox conditions in the LHDAC using a mixture of Ar and H2 for insulation media. The experiments of this study were carried out at the GSECARS sector of the Advanced Photon Source at Argonne National Laboratory. In this study, α-Fe2O3 (hematite), ε-FeOOH (CaCl2-type), and Fe3O4 (magnetite) starting materials were used for probing changes of redox conditions. Experiments were also conducted with a pure Ar-medium for ε-FeOOH at the same pressure-temperature conditions of the hydrogen-bearing medium in order to provide a reference point for data which has uncontrolled redox conditions for an initially Fe(2+)-free material. The results for the ε-FeOOH starting material in Ar show transformation to ι-Fe2O3 (Rh2O3(II)-type) at 30.0 GPa and 1900 K, while in Ar + H2 it transformed to Fe5O7 with minor FeH (dhcp) at 30.0 GPa and 1850 K. For α-Fe2O3 in Ar + H2, it was found to convert to ε-FeOOH, Fe5O7, Fe5O6, and FeH (dhcp) at 36.5 GPa and 1800 K. For Fe3O4 in Ar + H2, it was found to convert to Fe4O5 (CaFe3O5-type), Fe5O6, and minor FeH (fcc) at 26.0 GPa and 1800 K. These results demonstrate that H in an Ar medium can promote the conversion of some Fe(3+) to Fe(2+) and Fe(0). However, the formation of ε-FeOOH in the α-Fe2O3 starting material suggests that H may participate in the chemical reaction of iron oxides.
ContributorsKulka, Britany Lynn (Author) / Shim, Sang-Heon (Thesis advisor) / Sharp, Thomas (Committee member) / Leinenweber, Kurt (Committee member) / Hervig, Richard (Committee member) / Arizona State University (Publisher)
Created2021