Matching Items (2)
Filtering by

Clear all filters

135005-Thumbnail Image.png
Description
Abstract: The RAS/RAF/MEK/ERK (RAS signaling cascade) pathway is a highly conserved biochemical signaling cascade that exists in every mammalian cell. The pathway is highly versatile in functionality due to hundreds of substrates that regulate metabolism, apoptosis, and proliferation in both adult and developing tissues. The RAS signaling cascade has been

Abstract: The RAS/RAF/MEK/ERK (RAS signaling cascade) pathway is a highly conserved biochemical signaling cascade that exists in every mammalian cell. The pathway is highly versatile in functionality due to hundreds of substrates that regulate metabolism, apoptosis, and proliferation in both adult and developing tissues. The RAS signaling cascade has been examined in the context of cancers since mutations can lead to the disruption of the cell cycle and unregulated cellular proliferation. In addition, germline mutations in the pathway have been shown to cause a group of syndromes known as RASopathies. RASopathies are marked by facial defects, seizures, developmental delays, and cognitive dysfunction often due to enhanced activation of the RAS signaling cascade. Although there are noted factors that play roles in neurological disease, such as a hyperactivated RAS signaling cascade, the pathogenesis of neurological defects is not fully understood. The Newbern lab uses conditional mutagenesis to examine how hyperactivating the RAS/MAPK pathway affects GABAergic neurons in a cortical microcircuit, especially during development. Inhibitory neurons are implicated in seizures and epilepsy is common in RASopathies, thus GABAergic neurons are of particular interest (Rauen, 2013). Gain-of-function ERK was not found to significantly alter global locomotion or anxiety-like behaviors. Interestingly, the mutant mice exhibited freezing behavior in the first twenty-two seconds of the open field assay that appeared to be consistent with absence seizures. Direct EEG recordings confirmed spontaneous seizure activity and mutants had a reduced seizure threshold. We hypothesized that these deficits were due to altered GABAergic neuron number. Indeed, mutant mice exhibited a 30% reduction in total cortical GABAergic neuron number. This effect appeared to be cell subtype specific, where neurons expressing somatostatin (SST) existed in similar numbers among controls and mutants but a significant decrease in the number of those expressing parvalbumin (PV) was observed. I hypothesized that a recently identified GABAergic neuron expressing vasoactive intestinal polypeptide (VIP) would also be affected in such a manner that fewer VIP neurons exist in the mutants than the wildtype. Subsequent histological studies in these mice found there to be no significant difference in VIP populations. Selective affects seem to only have an effect on the development of PV neurons in the cortex. Further studies are underway to define the mechanism responsible for aberrant GABAergic neuron development.
ContributorsGonzalez, Javier (Author) / Newbern, Jason (Thesis director) / Neisewander, Janet (Committee member) / Barrett, The Honors College (Contributor)
Created2016-05
161234-Thumbnail Image.png
Description
LKB1/STK11 is a serine/threonine kinase first identified in C.elegans as a gene important for cell polarity and proliferation. Mutations in LKB1 are the primary cause of Peutz-Jegher’s cancer syndrome, an autosomal dominantly inherited disease, in which patients are predisposed to benign and malignant tumors. Past studies have focused on defining

LKB1/STK11 is a serine/threonine kinase first identified in C.elegans as a gene important for cell polarity and proliferation. Mutations in LKB1 are the primary cause of Peutz-Jegher’s cancer syndrome, an autosomal dominantly inherited disease, in which patients are predisposed to benign and malignant tumors. Past studies have focused on defining LKB1 functions in various tissue types, for example LKB1 regulates axonal polarization and dendritic arborization by activating downstream substrates in excitatory neurons of the developing neocortex. However, the implications of LKB1, specifically in the developing cortical inhibitory GABAergic interneurons is unknown. LKB1 deletion was achieved by using Cre-lox technology to induce LKB1 loss in cells localized in the medial ganglionic eminence (MGE) that express Nkx2.1 and generate cortical GABAergic neurons. In this research study it is suggested that LKB1 plays a role in GABAergic interneuron specification by specifically regulating the expression of parvalbumin during the development of fast-spiking interneurons. Preliminary evidence suggest LKB1 also modulates the number of Nkx2.1-derived oligodendrocytes in the cortex. By utilizing a GABAergic neuron specific LKB1 deletion mutant, we confirmed that the loss of parvalbumin expression was due to a GABAergic neuron autonomous function for LKB1. These data provide new insight into the cell specific functions of LKB1 in the developing brain.
ContributorsSebastian, Rebecca (Author) / Newbern, Jason (Thesis advisor) / Neisewander, Janet (Committee member) / Gipson-Reichardt, Cassandra (Committee member) / Arizona State University (Publisher)
Created2019