Matching Items (33)

134959-Thumbnail Image.png

Multi-Layer Optical Coatings Composed of Silicon Nanoparticles

Description

To compete with fossil fuel electricity generation, there is a need for higher efficiency solar cells to produce renewable energy. Currently, this is the best way to lower generation costs

To compete with fossil fuel electricity generation, there is a need for higher efficiency solar cells to produce renewable energy. Currently, this is the best way to lower generation costs and the price of energy [1]. The goal of this Barrett Honors Thesis is to design an optical coating model that has five or fewer layers (with varying thickness and refractive index, within the above range) and that has the maximum reflectance possible between 950 and 1200 nanometers for normally incident light. Manipulating silicon monolayers to become efficient inversion layers to use in solar cells aligns with the Ira. A Fulton Schools of Engineering research themes of energy and sustainability [2]. Silicon monolayers could be specifically designed for different doping substrates. These substrates could range from common-used materials such as boron and phosphorus, to rare-earth doped zinc oxides or even fullerene blends. Exploring how the doping material, and in what quantity, affects solar cell energy output could revolutionize the current production methods and commercial market. If solar cells can be manufactured more economically, yet still retain high efficiency rates, then more people will have access to alternate, "green" energy that does not deplete nonrenewable resources.

Contributors

Agent

Created

Date Created
  • 2016-12

137033-Thumbnail Image.png

Novel Applications to Si Heterojunction Solar Cells

Description

Proposed and tested were three different methods to deposit important layers of Silicon heterojunction solar cells (SHJs). If there were a shortage of Silver, Aluminum could be substituted for the

Proposed and tested were three different methods to deposit important layers of Silicon heterojunction solar cells (SHJs). If there were a shortage of Silver, Aluminum could be substituted for the contacts. If there were a shortage of Indium, Yttrium Zinc Oxide could be substituted. To improve the solar cell, the p and n type layers can be grown with hydrogenated nanocrystallline Silicon (nc-Si:H). 40% and 50% nc-Si:H has shown a maximum absorbance reduction of 5 times compared to hydrogenated amorphous Silicon (a-Si). The substitutions offer alternatives which increase the total possible amount of solar cell production, advancing toward completion of the Terrawatt challenge.

Contributors

Agent

Created

Date Created
  • 2014-05

136885-Thumbnail Image.png

Synthesis and Electrochemical Characterization of Silicon Clathrates for Use in Lithium-Ion Battery Anodes

Description

Lithium-ion batteries are one of the most widely used energy storage solutions today. As renewable energy sources proliferate to meet growth in worldwide energy consumption, it is important that lithium-ion

Lithium-ion batteries are one of the most widely used energy storage solutions today. As renewable energy sources proliferate to meet growth in worldwide energy consumption, it is important that lithium-ion batteries be improved to help capture this energy for use when the demand arises. One way to boost the performance of lithium-ion batteries is to replace the electrode active materials with materials of higher specific capacity. Silicon is one material that has been widely touted as a potential replacement for the graphite used in commercial anodes with a theoretical capacity of 3500 mAh/g as opposed to graphite's 372 mAh/g. However, bulk silicon is known to pulverize after experiencing large strains during lithiation. Here, silicon clathrates are investigated as a potential structure for accommodation of these strains. Silicon clathrates consist of covalently bonded silicon host cages surrounding a guest alkali or alkaline earth metal ion. Previous work has looked at silicon clathrates for their superconducting and thermoelectric properties. In this study, electrochemical properties of type I and II silicon clathrates with sodium guest ions (NaxSi46 and NaxSi136) and type I silicon clathrates with copper framework substitution and barium guest ions (Ba8CuxSi46-x) are examined. Sodium clathrates showed very high capacities during initial lithiation (>2500 mAh/g), but rapidly lost capacity thereafter. X-ray diffraction after lithiation showed conversion of the clathrate phase to lithium silicide and then to amorphous silicon after delithiation, indicating destruction of the clathrate structure as a possible explanation for the rapid capacity fade. Ba8CuxSi46-x clathrates were found to have their structures completely intact after 50 cycles. However, they had very low reversible capacities (<100 mAh/g) and potentially might not be electrochemically active. Further work is needed to better understand exactly how lithium is inserted into clathrates and if copper impurities detected during wavelength-dispersive X-ray spectroscopy could be inhibiting lithium transport into the clathrates.

Contributors

Agent

Created

Date Created
  • 2014-05

137466-Thumbnail Image.png

Wet NanoBonding™: Catalyzing Molecular Cross-Bridges and Interphases Between Nanoscopically Smoothed Si-Based Surfaces and Tailoring Surface Energy Components

Description

Dry and steam NanoBonding™ are conceived and researched to bond Si-based surfaces, via nucleation and growth of a two-dimensional SiOxHy or hydrated SiOxHy interphase connecting surfaces at the nanoscale

Dry and steam NanoBonding™ are conceived and researched to bond Si-based surfaces, via nucleation and growth of a two-dimensional SiOxHy or hydrated SiOxHy interphase connecting surfaces at the nanoscale across macroscopic domains. The motivation is to create strong, long lasting, hermetically bonded sensors with their electronics for the development of an artificial pancreas and to bond solar cells to glass panels for robust photovoltaic technology. The first step in NanoBonding™ is to synthesize smooth surfaces with 20 nm wide atomic terraces via a precursor phase, ß-cSiO2 on Si(100) and oxygen-deficient SiOx on the silica using the Herbots-Atluri process and Entrepix’s spin etching. Smooth precursor phases act as geometric and chemical template to nucleate and grow macroscopic contacting domains where cross bridging occurs via arrays of molecular strands in the hydrated SiOxHy interphase. Steam pressurization is found to catalyze NanoBonding™ consistently, eliminating the need for direct mechanical compression that limits the size and shape of wafers to be bonded in turn, reducing the cost of processing. Total surface energy measurements via 3 Liquids Contact Angle Analysis (3L CAA) enables accurate quantitative analysis of the total surface energy and each of its components. 3L CAA at each step in the process shows that surface energy drops to 42.4 ± 0.6 mJ/m2 from 57.5 ± 1.4 mJ/m2 after the Herbots-Atluri clean of an “As Received” wafer. 3L CAA after steam pressurization Nanobonding™ shows almost complete elimination from 13.8 mJ/m2 ± 1.0 to 0.002 ±- 0.0002 mJ/m2 in the contribution of acceptors to the total free surface energy, and an increase from 0.2 ± .03 to 23.8± 1.6 mJ/m2 in the contribution of donors. This is consistent with an increase in hydroxylation of the ß-cSiO2 surface as a consistent precursor phase for cross-bridging. This research optimizes the use of glycerin, water, and α-bromo-naphtalene in the use of 3L CAA to effectively quantify the components of total free surface energy which helps to better understand the most consistent method for NanoBonding™.

Contributors

Created

Date Created
  • 2013-05

136216-Thumbnail Image.png

Optimal Coherent Control of Spin State Transfer in Silicon

Description

In this paper, optimal control routines are applied to an existing problem of electron state transfer to determine if spin information can successfully be moved across a chain of donor

In this paper, optimal control routines are applied to an existing problem of electron state transfer to determine if spin information can successfully be moved across a chain of donor atoms in silicon. The additional spin degrees of freedom are introduced into the formulation of the problem as well as the control optimization algorithm. We find a timescale of transfer for spin quantum information across the chain fitting with a t > π/A and t > 2π/A transfer pulse time corresponding with rotation of states on the electron Bloch sphere where A is the electron-nuclear coupling constant. Introduction of a magnetic field weakens transfer
efficiencies at high field strengths and prohibits anti-aligned nuclear states from transferring. We also develop a rudimentary theoretical model based on simulated results and partially validate the characteristic transfer times for spin states. This model also establishes a framework for future work including the introduction of a magnetic field.

Contributors

Agent

Created

Date Created
  • 2015-05

158708-Thumbnail Image.png

Reliability of Photovoltaic Cells with Plated Copper Electrodes

Description

An ongoing effort in the photovoltaic (PV) industry is to reduce the major manufacturing cost components of solar cells, the great majority of which are based on crystalline silicon (c-Si).

An ongoing effort in the photovoltaic (PV) industry is to reduce the major manufacturing cost components of solar cells, the great majority of which are based on crystalline silicon (c-Si). This includes the substitution of screenprinted silver (Ag) cell contacts with alternative copper (Cu)-based contacts, usually applied with plating. Plated Cu contact schemes have been under study for many years with only minor traction in industrial production. One of the more commonly-cited barriers to the adoption of Cu-based contacts for photovoltaics is long-term reliability, as Cu is a significant contaminant in c-Si, forming precipitates that degrade performance via degradation of diode character and reduction of minority carrier lifetime. Cu contamination from contacts might cause degradation during field deployment if Cu is able to ingress into c-Si. Furthermore, Cu contamination is also known to cause a form of light-induced degradation (LID) which further degrades carrier lifetime when cells are exposed to light.

Prior literature on Cu-contact reliability tended to focus on accelerated testing at the cell and wafer level that may not be entirely replicative of real-world environmental stresses in PV modules. This thesis is aimed at advancing the understanding of Cu-contact reliability from the perspective of quasi-commercial modules under more realistic stresses. In this thesis, c-Si solar cells with Cu-plated contacts are fabricated, made into PV modules, and subjected to environmental stress in an attempt to induce hypothesized failure modes and understand any new vulnerabilities that Cu contacts might introduce. In particular, damp heat stress is applied to conventional, p-type c-Si modules and high efficiency, n-type c-Si heterojunction modules. I present evidence of Cu-induced diode degradation that also depends on PV module materials, as well as degradation unrelated to Cu, and in either case suggest engineering solutions to the observed degradation. In a forensic search for degradation mechanisms, I present novel evidence of Cu outdiffusion from contact layers and encapsulant-driven contact corrosion as potential key factors. Finally, outdoor exposures to light uncover peculiarities in Cu-plated samples, but do not point to especially serious vulnerabilities.

Contributors

Agent

Created

Date Created
  • 2020

152312-Thumbnail Image.png

Electrical and thermal transport in alternative device technologies

Description

The goal of this research work is to develop a particle-based device simulator for modeling strained silicon devices. Two separate modules had to be developed for that purpose: A generic

The goal of this research work is to develop a particle-based device simulator for modeling strained silicon devices. Two separate modules had to be developed for that purpose: A generic bulk Monte Carlo simulation code which in the long-time limit solves the Boltzmann transport equation for electrons; and an extension to this code that solves for the bulk properties of strained silicon. One scattering table is needed for conventional silicon, whereas, because of the strain breaking the symmetry of the system, three scattering tables are needed for modeling strained silicon material. Simulation results for the average drift velocity and the average electron energy are in close agreement with published data. A Monte Carlo device simulation tool has also been employed to integrate the effects of self-heating into device simulation for Silicon on Insulator devices. The effects of different types of materials for buried oxide layers have been studied. Sapphire, Aluminum Nitride (AlN), Silicon dioxide (SiO2) and Diamond have been used as target materials of interest in the analysis and the effects of varying insulator layer thickness have also been investigated. It was observed that although AlN exhibits the best isothermal behavior, diamond is the best choice when thermal effects are accounted for.

Contributors

Agent

Created

Date Created
  • 2013

155708-Thumbnail Image.png

6T-SRAM 1Mb design with test structures and post silicon validation

Description

Static random-access memories (SRAM) are integral part of design systems as caches and data memories that and occupy one-third of design space. The work presents an embedded low power SRAM

Static random-access memories (SRAM) are integral part of design systems as caches and data memories that and occupy one-third of design space. The work presents an embedded low power SRAM on a triple well process that allows body-biasing control. In addition to the normal mode operation, the design is embedded with Physical Unclonable Function (PUF) [Suh07] and Sense Amplifier Test (SA Test) mode. With PUF mode structures, the fabrication and environmental mismatches in bit cells are used to generate unique identification bits. These bits are fixed and known as preferred state of an SRAM bit cell. The direct access test structure is a measurement unit for offset voltage analysis of sense amplifiers. These designs are manufactured using a foundry bulk CMOS 55 nm low-power (LP) process. The details about SRAM bit-cell and peripheral circuit design is discussed in detail, for certain cases the circuit simulation analysis is performed with random variations embedded in SPICE models. Further, post-silicon testing results are discussed for normal operation of SRAMs and the special test modes. The silicon and circuit simulation results for various tests are presented.

Contributors

Agent

Created

Date Created
  • 2017

151596-Thumbnail Image.png

Carrier lifetime measurement for characterization of ultraclean thin p/p+ silicon epitaxial layers

Description

Carrier lifetime is one of the few parameters which can give information about the low defect densities in today's semiconductors. In principle there is no lower limit to the defect

Carrier lifetime is one of the few parameters which can give information about the low defect densities in today's semiconductors. In principle there is no lower limit to the defect density determined by lifetime measurements. No other technique can easily detect defect densities as low as 10-9 - 10-10 cm-3 in a simple, contactless room temperature measurement. However in practice, recombination lifetime τr measurements such as photoconductance decay (PCD) and surface photovoltage (SPV) that are widely used for characterization of bulk wafers face serious limitations when applied to thin epitaxial layers, where the layer thickness is smaller than the minority carrier diffusion length Ln. Other methods such as microwave photoconductance decay (µ-PCD), photoluminescence (PL), and frequency-dependent SPV, where the generated excess carriers are confined to the epitaxial layer width by using short excitation wavelengths, require complicated configuration and extensive surface passivation processes that make them time-consuming and not suitable for process screening purposes. Generation lifetime τg, typically measured with pulsed MOS capacitors (MOS-C) as test structures, has been shown to be an eminently suitable technique for characterization of thin epitaxial layers. It is for these reasons that the IC community, largely concerned with unipolar MOS devices, uses lifetime measurements as a "process cleanliness monitor." However when dealing with ultraclean epitaxial wafers, the classic MOS-C technique measures an effective generation lifetime τg eff which is dominated by the surface generation and hence cannot be used for screening impurity densities. I have developed a modified pulsed MOS technique for measuring generation lifetime in ultraclean thin p/p+ epitaxial layers which can be used to detect metallic impurities with densities as low as 10-10 cm-3. The widely used classic version has been shown to be unable to effectively detect such low impurity densities due to the domination of surface generation; whereas, the modified version can be used suitably as a metallic impurity density monitoring tool for such cases.

Contributors

Agent

Created

Date Created
  • 2013

157670-Thumbnail Image.png

Modeling towards lattice-matched dilute nitride GaNPAs on silicon multijunction solar cells

Description

Silicon photovoltaics is the dominant contribution to the global solar energy production. As increasing conversion efficiency has become one of the most important factors to lower the cost of photovoltaic

Silicon photovoltaics is the dominant contribution to the global solar energy production. As increasing conversion efficiency has become one of the most important factors to lower the cost of photovoltaic systems, the idea of making a multijunction solar cell based on a silicon bottom cell has attracted broad interest. Here the potential of using dilute nitride GaNPAs alloys for a lattice-matched 3-terminal 2-junction Si-based tandem solar cell through multiscale modeling is investigated. To calculate the electronic band structure of dilute nitride alloys with relatively low computational cost, the sp^3 d^5 s^* s_N tight-binding model is chosen, as it has been demonstrated to obtain quantitatively correct trends for the lowest conduction band near Γ, L, and X for dilute-N GaNAs. A genetic algorithm is used to optimize the sp^3 d^5 s^* tight-binding model for pure GaP and GaAs for their optical properties. Then the optimized sp^3 d^5 s^* s_N parametrizations are obtained for GaNP and GaNAs by fitting to experimental bandgap values. After that, a virtual crystal approach gives the Hamiltonian for GaNPAs alloys. From their tight-binding Hamiltonian, the first-order optical response functions of dilute nitride GaNAs, GaNP, and GaNPAs are calculated. As the N mole fraction varies, the calculated critical optical features vary with the correct trends, and agree well with experiment. The calculated optical properties are then used as input for the solar device simulations based on Silvaco ATLAS. For device simulation, a bottom cell model is first constructed to generate performance results that agree well with a demonstrated high-efficiency Si heterojunction interdigitated back contact (IBC) solar cell reported by Kaneka. The front a-Si/c-Si interface is then replaced by a GaP/Si interface for the investigation of the sensitivity of the GaP/Si interface to interface defects in terms of degradation of the IBC cell performance, where we find that an electric field that induces strong band bending can significantly mitigate the impact of the interfacial traps. Finally, a lattice-matched 3-terminal 2-junction tandem model is built for performance simulation by stacking a dilute nitride GaNP(As) cell on the Si IBC cell connected through a GaP/Si interface. The two subcells operate quasi-independently. In this 3-terminal tandem model, traps at the GaP/Si interface still significantly impact the performance of the Si subcell, but their effects on the GaNP subcell are relatively small. Assuming the interfacial traps are well passivated, the tandem efficiency surpasses that of a single-junction Si cell, with values close to 33% based on realistic parameters.

Contributors

Agent

Created

Date Created
  • 2019