Matching Items (2)
Filtering by

Clear all filters

134940-Thumbnail Image.png
Description
Currently, quantification of single cell RNA species in their natural contexts is restricted due to the little number of parallel analysis. Through this, we identify a method to increase the multiplexing capacity of RNA analysis for single cells in situ. Initially, RNA transcripts are found by using fluorescence in situ

Currently, quantification of single cell RNA species in their natural contexts is restricted due to the little number of parallel analysis. Through this, we identify a method to increase the multiplexing capacity of RNA analysis for single cells in situ. Initially, RNA transcripts are found by using fluorescence in situ hybridization (FISH). Once imaging and data storage is completed, the fluorescence signal is detached through photobleaching. By doing so, the FISH is reinitiated to detect other RNA species residing in the same cell. After reiterative cycles of hybridization, imaging and photobleaching, the identities, positions and copy numbers of a huge amount of varied RNA species can be computed in individual cells in situ. Through this approach, we have evaluated seven different transcripts in single HeLa cells with five reiterative RNA FISH cycles. This method has the ability to detect over 100 varied RNA species in single cells in situ, which can be further applied in studies of systems biology, molecular diagnosis and targeted therapies.
ContributorsJavangula, Saiswathi (Author) / Guo, Jia (Thesis director) / Liang, Jianming (Committee member) / School of Molecular Sciences (Contributor) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
157785-Thumbnail Image.png
Description
Quantifying molecular interactions is pivotal for understanding biological processes at molecular scale and for screening drugs. Although various detection technologies have been developed, it is still challenging to quantify the binding kinetics of small molecules because the sensitivities of the mainstream technologies scale down with the size of the molecule.

Quantifying molecular interactions is pivotal for understanding biological processes at molecular scale and for screening drugs. Although various detection technologies have been developed, it is still challenging to quantify the binding kinetics of small molecules because the sensitivities of the mainstream technologies scale down with the size of the molecule. To address this problem, two different optical detection methods, charge sensitive optical detection (CSOD) and virion
ano-oscillators, are developed to measure the binding-induced charge change instead of the mass change, which enables quantification of the binding kinetics for both large and small molecules.

In particular, the nano-oscillator approach provides a unique capability to image individual nanoparticles and measure the size and charge of each nanoparticle simultaneously. This approach is applied to measure one of the smallest biological particles - single protein molecules. By tracking the oscillation of each protein molecule, the size, charge, and mobility are measured in real-time with high precision. This capability also allows to monitor the conformation and charge changes of single protein molecules upon ligand binding. Measuring the size and charge of single proteins opens a new revenue to protein analysis and disease biomarker detection at the single molecule level.

The virion
ano-oscillators and the single protein approach employ a scheme where a particle is tethered to the surface with a polymer molecule. The dynamics of the particle is governed by two important forces: One is entropic force arising from the conformational change of the molecular tether, and the other is solvent damping on the particle and the molecule. The dynamics is studied by varying the type of the tether molecule, size of the particle, and viscosity of the solvent. The findings provide insights into single molecule studies using not only tethered particles, but also other approaches, including force spectroscopy using atomic force microscopy and nanopores.
ContributorsMa, Guangzhong, Ph.D (Author) / Tao, Nongjian (Thesis advisor) / Wang, Shaopeng (Thesis advisor) / Ros, Alexandra (Committee member) / Guo, Jia (Committee member) / Arizona State University (Publisher)
Created2019