Matching Items (6)

Filtering by

Clear all filters

150987-Thumbnail Image.png

Confidentiality protection of user data and adaptive resource allocation for managing multiple workflow performance in service-based systems

Description

In this dissertation, two interrelated problems of service-based systems (SBS) are addressed: protecting users' data confidentiality from service providers, and managing performance of multiple workflows in SBS. Current SBSs pose serious limitations to protecting users' data confidentiality. Since users' sensitive

In this dissertation, two interrelated problems of service-based systems (SBS) are addressed: protecting users' data confidentiality from service providers, and managing performance of multiple workflows in SBS. Current SBSs pose serious limitations to protecting users' data confidentiality. Since users' sensitive data is sent in unencrypted forms to remote machines owned and operated by third-party service providers, there are risks of unauthorized use of the users' sensitive data by service providers. Although there are many techniques for protecting users' data from outside attackers, currently there is no effective way to protect users' sensitive data from service providers. In this dissertation, an approach is presented to protecting the confidentiality of users' data from service providers, and ensuring that service providers cannot collect users' confidential data while the data is processed or stored in cloud computing systems. The approach has four major features: (1) separation of software service providers and infrastructure service providers, (2) hiding the information of the owners of data, (3) data obfuscation, and (4) software module decomposition and distributed execution. Since the approach to protecting users' data confidentiality includes software module decomposition and distributed execution, it is very important to effectively allocate the resource of servers in SBS to each of the software module to manage the overall performance of workflows in SBS. An approach is presented to resource allocation for SBS to adaptively allocating the system resources of servers to their software modules in runtime in order to satisfy the performance requirements of multiple workflows in SBS. Experimental results show that the dynamic resource allocation approach can substantially increase the throughput of a SBS and the optimal resource allocation can be found in polynomial time

Contributors

Agent

Created

Date Created
2012

153094-Thumbnail Image.png

Privacy preserving controls for Android applications

Description

Android is currently the most widely used mobile operating system. The permission model in Android governs the resource access privileges of applications. The permission model however is amenable to various attacks, including re-delegation attacks, background snooping attacks and disclosure of

Android is currently the most widely used mobile operating system. The permission model in Android governs the resource access privileges of applications. The permission model however is amenable to various attacks, including re-delegation attacks, background snooping attacks and disclosure of private information. This thesis is aimed at understanding, analyzing and performing forensics on application behavior. This research sheds light on several security aspects, including the use of inter-process communications (IPC) to perform permission re-delegation attacks.

Android permission system is more of app-driven rather than user controlled, which means it is the applications that specify their permission requirement and the only thing which the user can do is choose not to install a particular application based on the requirements. Given the all or nothing choice, users succumb to pressures and needs to accept permissions requested. This thesis proposes a couple of ways for providing the users finer grained control of application privileges. The same methods can be used to evade the Permission Re-delegation attack.

This thesis also proposes and implements a novel methodology in Android that can be used to control the access privileges of an Android application, taking into consideration the context of the running application. This application-context based permission usage is further used to analyze a set of sample applications. We found the evidence of applications spoofing or divulging user sensitive information such as location information, contact information, phone id and numbers, in the background. Such activities can be used to track users for a variety of privacy-intrusive purposes. We have developed implementations that minimize several forms of privacy leaks that are routinely done by stock applications.

Contributors

Agent

Created

Date Created
2014

153029-Thumbnail Image.png

Establishing the software-defined networking based defensive system in clouds

Description

Cloud computing is regarded as one of the most revolutionary technologies in the past decades. It provides scalable, flexible and secure resource provisioning services, which is also the reason why users prefer to migrate their locally processing workloads onto

Cloud computing is regarded as one of the most revolutionary technologies in the past decades. It provides scalable, flexible and secure resource provisioning services, which is also the reason why users prefer to migrate their locally processing workloads onto remote clouds. Besides commercial cloud system (i.e., Amazon EC2), ProtoGENI and PlanetLab have further improved the current Internet-based resource provisioning system by allowing end users to construct a virtual networking environment. By archiving the similar goal but with more flexible and efficient performance, I present the design and implementation of MobiCloud that is a geo-distributed mobile cloud computing platform, and G-PLaNE that focuses on how to construct the virtual networking environment upon the self-designed resource provisioning system consisting of multiple geo-distributed clusters. Furthermore, I conduct a comprehensive study to layout existing Mobile Cloud Computing (MCC) service models and corresponding representative related work. A new user-centric mobile cloud computing service model is proposed to advance the existing mobile cloud computing research.

After building the MobiCloud, G-PLaNE and studying the MCC model, I have been using Software Defined Networking (SDN) approaches to enhance the system security in the cloud virtual networking environment. I present an OpenFlow based IPS solution called SDNIPS that includes a new IPS architecture based on Open vSwitch (OVS) in the cloud software-based networking environment. It is enabled with elasticity service provisioning and Network Reconfiguration (NR) features based on POX controller. Finally, SDNIPS demonstrates the feasibility and shows more efficiency than traditional approaches through a thorough evaluation.

At last, I propose an OpenFlow-based defensive module composition framework called CloudArmour that is able to perform query, aggregation, analysis, and control function over distributed OpenFlow-enabled devices. I propose several modules and use the DDoS attack as an example to illustrate how to composite the comprehensive defensive solution based on CloudArmour framework. I introduce total 20 Python-based CloudArmour APIs. Finally, evaluation results prove the feasibility and efficiency of CloudArmour framework.

Contributors

Agent

Created

Date Created
2014

152849-Thumbnail Image.png

Infinite cacheflow: a rule-caching solution for software defined networks

Description

New OpenFlow switches support a wide range of network applications, such as firewalls, load balancers, routers, and traffic monitoring. While ternary content addressable memory (TCAM) allows switches to process packets at high speed based on multiple header fields, today's commodity

New OpenFlow switches support a wide range of network applications, such as firewalls, load balancers, routers, and traffic monitoring. While ternary content addressable memory (TCAM) allows switches to process packets at high speed based on multiple header fields, today's commodity switches support just thousands to tens of thousands of forwarding rules. To allow for finer-grained policies on this hardware, efficient ways to support the abstraction of a switch are needed with arbitrarily large rule tables. To do so, a hardware-software hybrid switch is designed that relies on rule caching to provide large rule tables at low cost. Unlike traditional caching solutions, neither individual rules are cached (to respect rule dependencies) nor compressed (to preserve the per-rule traffic counts). Instead long dependency chains are ``spliced'' to cache smaller groups of rules while preserving the semantics of the network policy. The proposed hybrid switch design satisfies three criteria: (1) responsiveness, to allow rapid changes to the cache with minimal effect on traffic throughput; (2) transparency, to faithfully support native OpenFlow semantics; (3) correctness, to cache rules while preserving the semantics of the original policy. The evaluation of the hybrid switch on large rule tables suggest that it can effectively expose the benefits of both hardware and software switches to the controller and to applications running on top of it.

Contributors

Agent

Created

Date Created
2014

152956-Thumbnail Image.png

An SDN-based IPS development framework in cloud networking environment

Description

Security has been one of the top concerns in cloud community while cloud resource abuse and malicious insiders are considered as top threats. Traditionally, Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS) have been widely deployed to manipulate cloud

Security has been one of the top concerns in cloud community while cloud resource abuse and malicious insiders are considered as top threats. Traditionally, Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS) have been widely deployed to manipulate cloud security, with the latter one providing additional prevention capability. However, as one of the most creative networking technologies, Software-Defined Networking (SDN) is rarely used to implement IDPS in the cloud computing environment because the lack of comprehensive development framework and processing flow. Simply migration from traditional IDS/IPS systems to SDN environment are not effective enough for detecting and defending malicious attacks. Hence, in this thesis, we present an IPS development framework to help user easily design and implement their defensive systems in cloud system by SDN technology. This framework enables SDN approaches to enhance the system security and performance. A Traffic Information Platform (TIP) is proposed as the cornerstone with several upper layer security modules such as Detection, Analysis and Prevention components. Benefiting from the flexible, compatible and programmable features of SDN, Customized Detection Engine, Network Topology Finder, Source Tracer and further user-developed security appliances are plugged in our framework to construct a SDN-based defensive system. Two main categories Python-based APIs are designed to support developers for further development. This system is designed and implemented based on the POX controller and Open vSwitch in the cloud computing environment. The efficiency of this framework is demonstrated by a sample IPS implementation and the performance of our framework is also evaluated.

Contributors

Agent

Created

Date Created
2014

153754-Thumbnail Image.png

Comparing a commercial and an SDN-based load balancer in a campus network

Description

Commercial load balancers are often in use, and the production network at Arizona State University (ASU) is no exception. However, because the load balancer uses IP addresses, the solution does not apply to all applications. One such application is Rsyslog.

Commercial load balancers are often in use, and the production network at Arizona State University (ASU) is no exception. However, because the load balancer uses IP addresses, the solution does not apply to all applications. One such application is Rsyslog. This software processes syslog packets and stores them in files. The loss rate of incoming log packets is high due to the incoming rate of the data. The Rsyslog servers are overwhelmed by the continuous data stream. To solve this problem a software defined networking (SDN) based load balancer is designed to perform a transport-level load balancing over the incoming load to Rsyslog servers. In this solution the load is forwarded to one Rsyslog server at a time, according to one of a Round-Robin, Random, or Load-Based policy. This gives time to other servers to process the data they have received and prevent them from being overwhelmed. The evaluation of the proposed solution is conducted a physical testbed with the same data feed as the commercial solution. The results suggest that the SDN-based load balancer is competitive with the commercial load balancer. Replacing the software OpenFlow switch with a hardware switch is likely to further improve the results.

Contributors

Agent

Created

Date Created
2015