Matching Items (3)

Filtering by

Clear all filters

150987-Thumbnail Image.png

Confidentiality protection of user data and adaptive resource allocation for managing multiple workflow performance in service-based systems

Description

In this dissertation, two interrelated problems of service-based systems (SBS) are addressed: protecting users' data confidentiality from service providers, and managing performance of multiple workflows in SBS. Current SBSs pose serious limitations to protecting users' data confidentiality. Since users' sensitive

In this dissertation, two interrelated problems of service-based systems (SBS) are addressed: protecting users' data confidentiality from service providers, and managing performance of multiple workflows in SBS. Current SBSs pose serious limitations to protecting users' data confidentiality. Since users' sensitive data is sent in unencrypted forms to remote machines owned and operated by third-party service providers, there are risks of unauthorized use of the users' sensitive data by service providers. Although there are many techniques for protecting users' data from outside attackers, currently there is no effective way to protect users' sensitive data from service providers. In this dissertation, an approach is presented to protecting the confidentiality of users' data from service providers, and ensuring that service providers cannot collect users' confidential data while the data is processed or stored in cloud computing systems. The approach has four major features: (1) separation of software service providers and infrastructure service providers, (2) hiding the information of the owners of data, (3) data obfuscation, and (4) software module decomposition and distributed execution. Since the approach to protecting users' data confidentiality includes software module decomposition and distributed execution, it is very important to effectively allocate the resource of servers in SBS to each of the software module to manage the overall performance of workflows in SBS. An approach is presented to resource allocation for SBS to adaptively allocating the system resources of servers to their software modules in runtime in order to satisfy the performance requirements of multiple workflows in SBS. Experimental results show that the dynamic resource allocation approach can substantially increase the throughput of a SBS and the optimal resource allocation can be found in polynomial time

Contributors

Agent

Created

Date Created
2012

151498-Thumbnail Image.png

Optimization for resource-constrained wireless networks

Description

Nowadays, wireless communications and networks have been widely used in our daily lives. One of the most important topics related to networking research is using optimization tools to improve the utilization of network resources. In this dissertation, we concentrate on

Nowadays, wireless communications and networks have been widely used in our daily lives. One of the most important topics related to networking research is using optimization tools to improve the utilization of network resources. In this dissertation, we concentrate on optimization for resource-constrained wireless networks, and study two fundamental resource-allocation problems: 1) distributed routing optimization and 2) anypath routing optimization. The study on the distributed routing optimization problem is composed of two main thrusts, targeted at understanding distributed routing and resource optimization for multihop wireless networks. The first thrust is dedicated to understanding the impact of full-duplex transmission on wireless network resource optimization. We propose two provably good distributed algorithms to optimize the resources in a full-duplex wireless network. We prove their optimality and also provide network status analysis using dual space information. The second thrust is dedicated to understanding the influence of network entity load constraints on network resource allocation and routing computation. We propose a provably good distributed algorithm to allocate wireless resources. In addition, we propose a new subgradient optimization framework, which can provide findgrained convergence, optimality, and dual space information at each iteration. This framework can provide a useful theoretical foundation for many networking optimization problems. The study on the anypath routing optimization problem is composed of two main thrusts. The first thrust is dedicated to understanding the computational complexity of multi-constrained anypath routing and designing approximate solutions. We prove that this problem is NP-hard when the number of constraints is larger than one. We present two polynomial time K-approximation algorithms. One is a centralized algorithm while the other one is a distributed algorithm. For the second thrust, we study directional anypath routing and present a cross-layer design of MAC and routing. For the MAC layer, we present a directional anycast MAC. For the routing layer, we propose two polynomial time routing algorithms to compute directional anypaths based on two antenna models, and prove their ptimality based on the packet delivery ratio metric.

Contributors

Agent

Created

Date Created
2013

155138-Thumbnail Image.png

Centralized and decentralized methods of efficient resource allocation in cloud computing

Description

Resource allocation in cloud computing determines the allocation of computer and network resources of service providers to service requests of cloud users for meeting the cloud users' service requirements. The efficient and effective resource allocation determines the success of cloud

Resource allocation in cloud computing determines the allocation of computer and network resources of service providers to service requests of cloud users for meeting the cloud users' service requirements. The efficient and effective resource allocation determines the success of cloud computing. However, it is challenging to satisfy objectives of all service providers and all cloud users in an unpredictable environment with dynamic workload, large shared resources and complex policies to manage them.

Many studies propose to use centralized algorithms for achieving optimal solutions for resource allocation. However, the centralized algorithms may encounter the scalability problem to handle a large number of service requests in a realistically satisfactory time. Hence, this dissertation presents two studies. One study develops and tests heuristics of centralized resource allocation to produce near-optimal solutions in a scalable manner. Another study looks into decentralized methods of performing resource allocation.

The first part of this dissertation defines the resource allocation problem as a centralized optimization problem in Mixed Integer Programming (MIP) and obtains the optimal solutions for various resource-service problem scenarios. Based on the analysis of the optimal solutions, various heuristics are designed for efficient resource allocation. Extended experiments are conducted with larger numbers of user requests and service providers for performance evaluation of the resource allocation heuristics. Experimental results of the resource allocation heuristics show the comparable performance of the heuristics to the optimal solutions from solving the optimization problem. Moreover, the resource allocation heuristics demonstrate better computational efficiency and thus scalability than solving the optimization problem.

The second part of this dissertation looks into elements of service provider-user coordination first in the formulation of the centralized resource allocation problem in MIP and then in the formulation of the optimization problem in a decentralized manner for various problem cases. By examining differences between the centralized, optimal solutions and the decentralized solutions for those problem cases, the analysis of how the decentralized service provider-user coordination breaks down the optimal solutions is performed. Based on the analysis, strategies of decentralized service provider-user coordination are developed.

Contributors

Agent

Created

Date Created
2016