Matching Items (2)

Filtering by

Clear all filters

150987-Thumbnail Image.png

Confidentiality protection of user data and adaptive resource allocation for managing multiple workflow performance in service-based systems

Description

In this dissertation, two interrelated problems of service-based systems (SBS) are addressed: protecting users' data confidentiality from service providers, and managing performance of multiple workflows in SBS. Current SBSs pose serious limitations to protecting users' data confidentiality. Since users' sensitive

In this dissertation, two interrelated problems of service-based systems (SBS) are addressed: protecting users' data confidentiality from service providers, and managing performance of multiple workflows in SBS. Current SBSs pose serious limitations to protecting users' data confidentiality. Since users' sensitive data is sent in unencrypted forms to remote machines owned and operated by third-party service providers, there are risks of unauthorized use of the users' sensitive data by service providers. Although there are many techniques for protecting users' data from outside attackers, currently there is no effective way to protect users' sensitive data from service providers. In this dissertation, an approach is presented to protecting the confidentiality of users' data from service providers, and ensuring that service providers cannot collect users' confidential data while the data is processed or stored in cloud computing systems. The approach has four major features: (1) separation of software service providers and infrastructure service providers, (2) hiding the information of the owners of data, (3) data obfuscation, and (4) software module decomposition and distributed execution. Since the approach to protecting users' data confidentiality includes software module decomposition and distributed execution, it is very important to effectively allocate the resource of servers in SBS to each of the software module to manage the overall performance of workflows in SBS. An approach is presented to resource allocation for SBS to adaptively allocating the system resources of servers to their software modules in runtime in order to satisfy the performance requirements of multiple workflows in SBS. Experimental results show that the dynamic resource allocation approach can substantially increase the throughput of a SBS and the optimal resource allocation can be found in polynomial time

Contributors

Agent

Created

Date Created
2012

154152-Thumbnail Image.png

Performance Analysis of Low-Complexity Resource-Allocation Algorithms in Stochastic Networks Using Fluid Models

Description

Resource allocation in communication networks aims to assign various resources such as power, bandwidth and load in a fair and economic fashion so that the networks can be better utilized and shared by the communicating entities. The design of efficient

Resource allocation in communication networks aims to assign various resources such as power, bandwidth and load in a fair and economic fashion so that the networks can be better utilized and shared by the communicating entities. The design of efficient resource-allocation algorithms is, however, becoming more and more challenging due to the precipitously increasing scale of the networks. This thesis strives to understand how to design such low-complexity algorithms with performance guarantees.

In the first part, the link scheduling problem in wireless ad hoc networks is considered. The scheduler is charge of finding a set of wireless data links to activate at each time slot with the considerations of wireless interference, traffic dynamics, network topology and quality-of-service (QoS) requirements. Two different yet essential scenarios are investigated: the first one is when each packet has a specific deadline after which it will be discarded; the second is when each packet traverses the network in multiple hops instead of leaving the network after a one-hop transmission. In both scenarios the links need to be carefully scheduled to avoid starvation of users and congestion on links. One greedy algorithm is analyzed in each of the two scenarios and performance guarantees in terms of throughput of the networks are derived.

In the second part, the load-balancing problem in parallel computing is studied. Tasks arrive in batches and the duty of the load balancer is to place the tasks on the machines such that minimum queueing delay is incurred. Due to the huge size of modern data centers, sampling the status of all machines may result in significant overhead. Consequently, an algorithm based on limited queue information at the machines is examined and its asymptotic delay performance is characterized and it is shown that the proposed algorithm achieves the same delay with remarkably less sampling overhead compared to the well-known power-of-two-choices algorithm.

Two messages of the thesis are the following: greedy algorithms can work well in a stochastic setting; the fluid model can be useful in "derandomizing" the system and reveal the nature of the algorithm.

Contributors

Agent

Created

Date Created
2015