Matching Items (3)
Filtering by

Clear all filters

150987-Thumbnail Image.png
Description
In this dissertation, two interrelated problems of service-based systems (SBS) are addressed: protecting users' data confidentiality from service providers, and managing performance of multiple workflows in SBS. Current SBSs pose serious limitations to protecting users' data confidentiality. Since users' sensitive data is sent in unencrypted forms to remote machines owned

In this dissertation, two interrelated problems of service-based systems (SBS) are addressed: protecting users' data confidentiality from service providers, and managing performance of multiple workflows in SBS. Current SBSs pose serious limitations to protecting users' data confidentiality. Since users' sensitive data is sent in unencrypted forms to remote machines owned and operated by third-party service providers, there are risks of unauthorized use of the users' sensitive data by service providers. Although there are many techniques for protecting users' data from outside attackers, currently there is no effective way to protect users' sensitive data from service providers. In this dissertation, an approach is presented to protecting the confidentiality of users' data from service providers, and ensuring that service providers cannot collect users' confidential data while the data is processed or stored in cloud computing systems. The approach has four major features: (1) separation of software service providers and infrastructure service providers, (2) hiding the information of the owners of data, (3) data obfuscation, and (4) software module decomposition and distributed execution. Since the approach to protecting users' data confidentiality includes software module decomposition and distributed execution, it is very important to effectively allocate the resource of servers in SBS to each of the software module to manage the overall performance of workflows in SBS. An approach is presented to resource allocation for SBS to adaptively allocating the system resources of servers to their software modules in runtime in order to satisfy the performance requirements of multiple workflows in SBS. Experimental results show that the dynamic resource allocation approach can substantially increase the throughput of a SBS and the optimal resource allocation can be found in polynomial time
ContributorsAn, Ho Geun (Author) / Yau, Sik-Sang (Thesis advisor) / Huang, Dijiang (Committee member) / Ahn, Gail-Joon (Committee member) / Santanam, Raghu (Committee member) / Arizona State University (Publisher)
Created2012
158081-Thumbnail Image.png
Description
Despite an abundance of defenses that work to protect Internet users from online threats, malicious actors continue deploying relentless large-scale phishing attacks that target these users. Effectively mitigating phishing attacks remains a challenge for the security community due to attackers' ability to evolve and adapt to defenses, the cross-organizational

Despite an abundance of defenses that work to protect Internet users from online threats, malicious actors continue deploying relentless large-scale phishing attacks that target these users. Effectively mitigating phishing attacks remains a challenge for the security community due to attackers' ability to evolve and adapt to defenses, the cross-organizational nature of the infrastructure abused for phishing, and discrepancies between theoretical and realistic anti-phishing systems. Although technical countermeasures cannot always compensate for the human weakness exploited by social engineers, maintaining a clear and up-to-date understanding of the motivation behind---and execution of---modern phishing attacks is essential to optimizing such countermeasures.

In this dissertation, I analyze the state of the anti-phishing ecosystem and show that phishers use evasion techniques, including cloaking, to bypass anti-phishing mitigations in hopes of maximizing the return-on-investment of their attacks. I develop three novel, scalable data-collection and analysis frameworks to pinpoint the ecosystem vulnerabilities that sophisticated phishing websites exploit. The frameworks, which operate on real-world data and are designed for continuous deployment by anti-phishing organizations, empirically measure the robustness of industry-standard anti-phishing blacklists (PhishFarm and PhishTime) and proactively detect and map phishing attacks prior to launch (Golden Hour). Using these frameworks, I conduct a longitudinal study of blacklist performance and the first large-scale end-to-end analysis of phishing attacks (from spamming through monetization). As a result, I thoroughly characterize modern phishing websites and identify desirable characteristics for enhanced anti-phishing systems, such as more reliable methods for the ecosystem to collectively detect phishing websites and meaningfully share the corresponding intelligence. In addition, findings from these studies led to actionable security recommendations that were implemented by key organizations within the ecosystem to help improve the security of Internet users worldwide.
ContributorsOest, Adam (Author) / Ahn, Gail-Joon (Thesis advisor) / Doupe, Adam (Thesis advisor) / Shoshitaishvili, Yan (Committee member) / Johnson, RC (Committee member) / Arizona State University (Publisher)
Created2020
168593-Thumbnail Image.png
Description
Despite extensive research by the security community, cyberattacks such as phishing and Internet of Things (IoT) attacks remain profitable to criminals and continue to cause substantial damage not only to the victim users that they target, but also the organizations they impersonate. In recent years, phishing websites have taken the

Despite extensive research by the security community, cyberattacks such as phishing and Internet of Things (IoT) attacks remain profitable to criminals and continue to cause substantial damage not only to the victim users that they target, but also the organizations they impersonate. In recent years, phishing websites have taken the place of malware websites as the most prevalent web-based threat. Even though technical countermeasures effectively mitigate web-based malware, phishing websites continue to grow in sophistication and successfully slip past modern defenses. Phishing attack and its countermeasure have entered into a new era, where one side has upgraded their weapon, attempting to conquer the other. In addition, the amount and usage of IoT devices increases rapidly because of the development and deployment of 5G network. Although researchers have proposed secure execution environment, attacks targeting those devices can often succeed. Therefore, the security community desperately needs detection and prevention methodologies to fight against phishing and IoT attacks. In this dissertation, I design a framework, named CrawlPhish, to understand the prevalence and nature of such sophistications, including cloaking, in phishing attacks, which evade detections from the anti-phishing ecosystem by distinguishing the traffic between a crawler and a real Internet user and hence maximize the return-on-investment from phishing attacks. CrawlPhish also detects and categorizes client-side cloaking techniques in phishing with scalability and automation. Furthermore, I focus on the analysis redirection abuse in advanced phishing websites and hence propose mitigations to classify malicious redirection use via machine learning algorithms. Based on the observations from previous work, from the perspective of prevention, I design a novel anti-phishing system called Spartacus that can be deployed from the user end to completely neutralize phishing attacks. Lastly, inspired by Spartacus, I propose iCore, which proactively monitors the operations in the trusted execution environment to identify any maliciousness.
ContributorsZhang, Penghui (Author) / Ahn, Gail-Joon (Thesis advisor) / Doupe, Adam (Thesis advisor) / Oest, Adam (Committee member) / Kapravelos, Alexandros (Committee member) / Arizona State University (Publisher)
Created2022