Matching Items (5)
Filtering by

Clear all filters

151260-Thumbnail Image.png
Description
Social structure affects many aspects of ecology including mating systems, dispersal, and movements. The quality and pattern of associations among individuals can define social structure, thus detailed behavioral observations are vital to understanding species social structure and many other aspects of their ecology. In squamate reptiles (lizards and snakes), detailed

Social structure affects many aspects of ecology including mating systems, dispersal, and movements. The quality and pattern of associations among individuals can define social structure, thus detailed behavioral observations are vital to understanding species social structure and many other aspects of their ecology. In squamate reptiles (lizards and snakes), detailed observations of associations among individuals have been primarily limited to several lineages of lizards and have revealed a variety of social structures, including polygynous family group-living and monogamous pair-living. Here I describe the social structure of two communities within a population of Arizona black rattlesnakes (Crotalus cerberus) using association indices and social network analysis. I used remote timelapse cameras to semi-continuously sample rattlesnake behavior at communal basking sites during early April through mid-May in 2011 and 2012. I calculated an association index for each dyad (proportion of time they spent together) and used these indices to construct a weighted, undirected social network for each community. I found that individual C. cerberus vary in their tendency to form associations and are selective about with whom they associate. Some individuals preferred to be alone or in small groups while others preferred to be in large groups. Overall, rattlesnakes exhibited non-random association patterns, and this result was mainly driven by association selection of adults. Adults had greater association strengths and were more likely to have limited and selected associates. I identified eight subgroups within the two communities (five in one, three in the other), all of which contained adults and juveniles. My study is the first to show selected associations among individual snakes, but to my knowledge it is also the first to use association indices and social network analysis to examine association patterns among snakes. When these methods are applied to other snake species that aggregate, I anticipate the `discovery' of similar social structures.
ContributorsAmarello, Melissa (Author) / DeNardo, Dale F (Thesis advisor) / Sullivan, Brian K. (Committee member) / Schuett, Gordon W. (Committee member) / Arizona State University (Publisher)
Created2012
156075-Thumbnail Image.png
Description
Food is an essential driver of animal behavior. For social organisms, the acquisition of food guides interactions with the environment and with group-mates. Studies have focused on how social individuals find and choose food sources, and share both food and information with group-mates. However, it is often not clear how

Food is an essential driver of animal behavior. For social organisms, the acquisition of food guides interactions with the environment and with group-mates. Studies have focused on how social individuals find and choose food sources, and share both food and information with group-mates. However, it is often not clear how experiences throughout an individual's life influence such interactions. The core question of this thesis is how individuals’ experience contributes to within-caste behavioral variation in a social group. I investigate the effects of individual history, including physical injury and food-related experience, on individuals' social food sharing behavior, responses to food-related stimuli, and the associated neural biogenic amine signaling pathways. I use the eusocial honey bee (Apis mellifera) system, one in which individuals exhibit a high degree of plasticity in responses to environmental stimuli and there is a richness of communicatory pathways for food-related information. Foraging exposes honey bees to aversive experiences such as predation, con-specific competition, and environmental toxins. I show that foraging experience changes individuals' response thresholds to sucrose, a main component of adults’ diets, depending on whether foraging conditions are benign or aversive. Bodily injury is demonstrated to reduce individuals' appetitive responses to new, potentially food-predictive odors. Aversive conditions also impact an individual's social food sharing behavior; mouth-to-mouse trophallaxis with particular groupmates is modulated by aversive foraging conditions both for foragers who directly experienced these conditions and non-foragers who were influenced via social contact with foragers. Although the mechanisms underlying these behavioral changes have yet to be resolved, my results implicate biogenic amine signaling pathways as a potential component. Serotonin and octopamine concentrations are shown to undergo long-term change due to distinct foraging experiences. My work serves to highlight the malleability of a social individual's food-related behavior, suggesting that environmental conditions shape how individuals respond to food and share information with group-mates. This thesis contributes to a deeper understanding of inter-individual variation in animal behavior.
ContributorsFinkelstein, Abigail (Author) / Amdam, Gro V (Thesis advisor) / Conrad, Cheryl (Committee member) / Smith, Brian (Committee member) / Neisewander, Janet (Committee member) / Bimonte-Nelson, Heather A. (Committee member) / Arizona State University (Publisher)
Created2017
187779-Thumbnail Image.png
Description
Aggregation is a fundamental principle of animal behavior; it is especially significant tohighly social species, like ants. Ants typically aggregate their workers and brood in a central nest, potentially due to advantages in colony defense and regulation of the environment. In many ant species, when a colony must abandon its

Aggregation is a fundamental principle of animal behavior; it is especially significant tohighly social species, like ants. Ants typically aggregate their workers and brood in a central nest, potentially due to advantages in colony defense and regulation of the environment. In many ant species, when a colony must abandon its nest, it can effectively reach consensus on a new home. Ants of the genus Temnothorax have become a model for this collective decision-making process, and for decentralized cognition more broadly. Previous studies examine emigration by well-aggregated colonies, but can these ants also reach consensus when the colony has been scattered? Such scattering may readily occur in nature if the nest is disturbed by natural or man- made disasters. In this exploratory study, Temnothorax rugatulus colonies were randomly scattered in an arena and presented with a binary equal choice of nest sites. Findings concluded that the colonies were able to re-coalesce, however consensus is more difficult than for aggregated colonies and involved an additional primary phase of multiple temporary aggregations eventually yielding to reunification. The maximum percent of colony utilization for these aggregates was reached within the first hour, after which point, consensus tended to rise as aggregation decreased. Small, but frequent, aggregates formed within the first twenty minutes and remained and dissolved to the nest by varying processes. Each colony included a clump containing the queen, with the majority of aggregates containing at least one brood item. These findings provide additional insight to house-hunting experiments in more naturally challenging circumstances, as well as aggregation within Temnothorax colonies.
ContributorsGoodland, Brooke (Author) / Shaffer, Zachary (Thesis advisor) / Pratt, Stephen (Thesis advisor) / Pavlic, Theodore (Committee member) / Arizona State University (Publisher)
Created2023
158247-Thumbnail Image.png
Description
Social animals benefit from the aggregation of knowledge and cognitive processing power. Part of this benefit comes from individual heterogeneity, which provides the basis to group-level strategies, such as division of labor and collective intelligence. In turn, the outcomes of collective choices, as well as the needs of the society

Social animals benefit from the aggregation of knowledge and cognitive processing power. Part of this benefit comes from individual heterogeneity, which provides the basis to group-level strategies, such as division of labor and collective intelligence. In turn, the outcomes of collective choices, as well as the needs of the society at large, influence the behavior of individuals within it. My dissertation research addresses how the feedback between individual and group-level behavior affects individuals and promotes collective change. I study this question in the context of seed selection in the seed harvester ant, Pogonomyrmex californicus. I use both field and laboratory studies to explore questions relating to individual behavior: how forager decision-making is affected through information available in the nest and at the seed pile; how workers interact with seeds in the nest; and how forager preferences diverge from each other’s and the colony’s preference. I also explore the integration between individual and colony behavior, specifically: how interactions between the foraging and processing tasks affect colony collection behavior; how individual behavior changes affect colony preference changes and whether colony preference changes can be considered learning behavior. To answer these questions, I provided colonies with binary choices between seeds of unequal or similar quality, and measured individual, task group, and colony-level behavior. I found that colonies are capable of learning to discriminate between seeds, and learned information lasts at least one month without seed interaction outside of the nest. I also found that colony learning was coordinated by foragers receiving updated information from seeds in the nest to better discriminate and make choices between seed quality during searches for seeds outside of the nest. My results show that seed processing is essential for stimulating collection of novel seeds, and that foraging and processing are conducted by behaviorally and spatially overlapping but distinct groups of workers. Finally, I found that foragers’ preferences are diverse yet flexible, even when colonies are consistent in their preference at the population level. These combined experiments generate a more detailed and complete understanding of the mechanisms behind the flexibility of collective colony choices, how colonies incorporate new information, and how workers individually and collectively make foraging decisions for the colony in a decentralized manner.
ContributorsBespalova, Ioulia Ivanovna (Author) / Fewell, Jennifer (Thesis advisor) / Hölldobler, Bert (Committee member) / Liebig, Jürgen (Committee member) / Pinter-Wollman, Noa (Committee member) / Pratt, Stephen (Committee member) / Arizona State University (Publisher)
Created2020
161298-Thumbnail Image.png
Description
Understanding the evolution of cooperation is a central goal in animal behavior research. In several animal taxa, socioecological environments that promote frequent interaction and social tolerance have favored the evolution of strong, equitable, and enduring social bonds, which facilitate cooperation and confer fitness benefits. Among males, strong bonds are believed

Understanding the evolution of cooperation is a central goal in animal behavior research. In several animal taxa, socioecological environments that promote frequent interaction and social tolerance have favored the evolution of strong, equitable, and enduring social bonds, which facilitate cooperation and confer fitness benefits. Among males, strong bonds are believed to have evolved in the context of long-term alliances that help individuals compete for dominance status and mating access, but it remains unclear in some species what factors predict the strength and quality of bonds and how sociality relates to adaptive outcomes. To fill these gaps, this dissertation presents three studies of male chimpanzees at Gombe National Park, Tanzania, addressing the form, function, and development of male social relationships. Maternal brothers who were close in age formed the strongest bonds, strong bonds were associated with more reciprocal grooming relationships, and the strength of bonds were stable for an average of two years, while lasting up to 13 years. For other males, similarity in age and rank had negligible effects on bond strength, suggesting that bond strength results from a more complex process than a simple accounting of basic characteristics. Additionally, these social bonds, identified using both association in small groups and grooming activity, showed positive relationships with changes in dominance. In combination with prior studies, these results suggest that having strong bonds is a valuable strategy for achieving higher rank and, ultimately, increased reproductive success. Lastly, immature males who associated more with particular adult males while growing up were more likely to both associate and groom with those same males after entering adulthood. By contrast, association rates among immature male peers were not correlated with bond strength as adults. These findings suggest that the persistence of social relationships beyond those between mothers and offspring are more likely to evolve in long-lived species where young males enter adult hierarchies comprised of stronger or more socially experienced competitors. Overall, these studies reinforce the notion that social bonds are a chimpanzee universal, fill in gaps about the relationship between sociality and fitness, and emphasize the utility of a prolonged immature period.
ContributorsBray, Joel (Author) / Gilby, Ian C (Thesis advisor) / Silk, Joan B (Committee member) / Langergraber, Kevin E (Committee member) / Machanda, Zarin P (Committee member) / Arizona State University (Publisher)
Created2021