Matching Items (1)
Filtering by

Clear all filters

153632-Thumbnail Image.png
Description
Intracranial pressure is an important parameter to monitor, and elevated intracranial pressure can be life threatening. Elevated intracranial pressure is indicative of distress in the brain attributed by conditions such as aneurysm, traumatic brain injury, brain tumor, hydrocephalus, stroke, or meningitis.

Electrocorticography (ECoG) recordings are invaluable in understanding epilepsy and

Intracranial pressure is an important parameter to monitor, and elevated intracranial pressure can be life threatening. Elevated intracranial pressure is indicative of distress in the brain attributed by conditions such as aneurysm, traumatic brain injury, brain tumor, hydrocephalus, stroke, or meningitis.

Electrocorticography (ECoG) recordings are invaluable in understanding epilepsy and detecting seizure zones. However, ECoG electrodes cause a foreign body mass effect, swelling, and pneumocephaly, which results in elevation of intracranial pressure (ICP). Thus, the aim of this work is to design an intracranial pressure monitoring system that could augment ECoG electrodes.

A minimally invasive, low-cost epidural intracranial pressure monitoring system is developed for this purpose, using a commercial pressure transducer available for biomedical applications. The system is composed of a pressure transducer, sensing cup, electronics, and data acquisition system. The pressure transducer is a microelectromechanical system (MEMS)-based die that works on piezoresistive phenomenon with dielectric isolation for direct contact with fluids.

The developed system was bench tested and verified in an animal model to confirm the efficacy of the system for intracranial pressure monitoring. The system has a 0.1 mmHg accuracy and a 2% error for the 0-10 mmHg range, with resolution of 0.01 mmHg. This system serves as a minimally invasive (2 mm burr hole) epidural ICP monitor, which could augment existing ECoG electrode arrays, to simultaneously measure intracranial pressure along with the neural signals.

This device could also be employed with brain implants that causes elevation in ICP due to tissue - implant interaction often leading to edema. This research explores the concept and feasibility for integrating the sensing component directly on to the ECoG electrode arrays.
ContributorsSampath Kumaran, Ranjani (Author) / Christen, Jennifer Blain (Thesis advisor) / Tillery, Stephen Helms (Committee member) / Greger, Bradley (Committee member) / Arizona State University (Publisher)
Created2015