Matching Items (8)
Filtering by

Clear all filters

152010-Thumbnail Image.png
Description
Micro Electro Mechanical Systems (MEMS) is one of the fastest growing field in silicon industry. Low cost production is key for any company to improve their market share. MEMS testing is challenging since input to test a MEMS device require physical stimulus like acceleration, pressure etc. Also, MEMS device vary

Micro Electro Mechanical Systems (MEMS) is one of the fastest growing field in silicon industry. Low cost production is key for any company to improve their market share. MEMS testing is challenging since input to test a MEMS device require physical stimulus like acceleration, pressure etc. Also, MEMS device vary with process and requires calibration to make them reliable. This increases test cost and testing time. This challenge can be overcome by combining electrical stimulus based testing along with statistical analysis on MEMS response for electrical stimulus and also limited physical stimulus response data. This thesis proposes electrical stimulus based built in self test(BIST) which can be used to get MEMS data and later this data can be used for statistical analysis. A capacitive MEMS accelerometer is considered to test this BIST approach. This BIST circuit overhead is less and utilizes most of the standard readout circuit. This thesis discusses accelerometer response for electrical stimulus and BIST architecture. As a part of this BIST circuit, a second order sigma delta modulator has been designed. This modulator has a sampling frequency of 1MHz and bandwidth of 6KHz. SNDR of 60dB is achieved with 1Vpp differential input signal and 3.3V supply
ContributorsKundur, Vinay (Author) / Bakkaloglu, Bertan (Committee member) / Ozev, Sule (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2013
151410-Thumbnail Image.png
Description
Test cost has become a significant portion of device cost and a bottleneck in high volume manufacturing. Increasing integration density and shrinking feature sizes increased test time/cost and reduce observability. Test engineers have to put a tremendous effort in order to maintain test cost within an acceptable budget. Unfortunately, there

Test cost has become a significant portion of device cost and a bottleneck in high volume manufacturing. Increasing integration density and shrinking feature sizes increased test time/cost and reduce observability. Test engineers have to put a tremendous effort in order to maintain test cost within an acceptable budget. Unfortunately, there is not a single straightforward solution to the problem. Products that are tested have several application domains and distinct customer profiles. Some products are required to operate for long periods of time while others are required to be low cost and optimized for low cost. Multitude of constraints and goals make it impossible to find a single solution that work for all cases. Hence, test development/optimization is typically design/circuit dependent and even process specific. Therefore, test optimization cannot be performed using a single test approach, but necessitates a diversity of approaches. This works aims at addressing test cost minimization and test quality improvement at various levels. In the first chapter of the work, we investigate pre-silicon strategies, such as design for test and pre-silicon statistical simulation optimization. In the second chapter, we investigate efficient post-silicon test strategies, such as adaptive test, adaptive multi-site test, outlier analysis, and process shift detection/tracking.
ContributorsYilmaz, Ender (Author) / Ozev, Sule (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Cao, Yu (Committee member) / Christen, Jennifer Blain (Committee member) / Arizona State University (Publisher)
Created2012
152409-Thumbnail Image.png
Description
The applications which use MEMS accelerometer have been on rise and many new fields which are using the MEMS devices have been on rise. The industry is trying to reduce the cost of production of these MEMS devices. These devices are manufactured using micromachining and the interface circuitry is manufactured

The applications which use MEMS accelerometer have been on rise and many new fields which are using the MEMS devices have been on rise. The industry is trying to reduce the cost of production of these MEMS devices. These devices are manufactured using micromachining and the interface circuitry is manufactured using CMOS and the final product is integrated on to a single chip. Amount spent on testing of the MEMS devices make up a considerable share of the total final cost of the device. In order to save the cost and time spent on testing, researchers have been trying to develop different methodologies. At present, MEMS devices are tested using mechanical stimuli to measure the device parameters and for calibration the device. This testing is necessary since the MEMS process is not a very well controlled process unlike CMOS. This is done using an ATE and the cost of using ATE (automatic testing equipment) contribute to 30-40% of the devices final cost. This thesis proposes an architecture which can use an Electrical Signal to stimulate the MEMS device and use the data from the MEMS response in approximating the calibration coefficients efficiently. As a proof of concept, we have designed a BIST (Built-in self-test) circuit for MEMS accelerometer. The BIST has an electrical stimulus generator, Capacitance-to-voltage converter, ∑ ∆ ADC. This thesis explains in detail the design of the Electrical stimulus generator. We have also designed a technique to correlate the parameters obtained from electrical stimuli to those obtained by mechanical stimuli. This method is cost effective since the additional circuitry needed to implement BIST is less since the technique utilizes most of the existing standard readout circuitry already present.
ContributorsJangala Naga, Naveen Sai (Author) / Ozev, Sule (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2014
153036-Thumbnail Image.png
Description
High speed current-steering DACs with high linearity are needed in today's applications such as wired and wireless communications, instrumentation, radar, and other direct digital synthesis (DDS) applications. However, a trade-off exists between the speed and resolution of Nyquist rate current-steering DACs. As the resolution increases, more transistor area

High speed current-steering DACs with high linearity are needed in today's applications such as wired and wireless communications, instrumentation, radar, and other direct digital synthesis (DDS) applications. However, a trade-off exists between the speed and resolution of Nyquist rate current-steering DACs. As the resolution increases, more transistor area is required to meet matching requirements for optimal linearity and thus, the overall speed of the DAC is limited.

In this thesis work, a 12-bit current-steering DAC was designed with current sources scaled below the required matching size to decrease the area and increase the overall speed of the DAC. By scaling the current sources, however, errors due to random mismatch between current sources will arise and additional calibration hardware is necessary to ensure 12-bit linearity. This work presents how to implement a self-calibration DAC that works to fix amplitude errors while maintaining a lower overall area. Additionally, the DAC designed in this thesis investigates the implementation feasibility of a data-interleaved architecture. Data interleaving can increase the total bandwidth of the DACs by 2 with an increase in SQNR by an additional 3 dB.

The final results show that the calibration method can effectively improve the linearity of the DAC. The DAC is able to run up to 400 MSPS frequencies with a 75 dB SFDR performance and above 87 dB SFDR performance at update rates of 200 MSPS.
ContributorsJankunas, Benjamin (Author) / Bakkaloglu, Bertan (Thesis advisor) / Kitchen, Jennifer (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2014
151070-Thumbnail Image.png
Description
Built-in-Self-Test (BiST) for transmitters is a desirable choice since it eliminates the reliance on expensive instrumentation to do RF signal analysis. Existing on-chip resources, such as power or envelope detectors, or small additional circuitry can be used for BiST purposes. However, due to limited bandwidth, measurement of complex specifications, such

Built-in-Self-Test (BiST) for transmitters is a desirable choice since it eliminates the reliance on expensive instrumentation to do RF signal analysis. Existing on-chip resources, such as power or envelope detectors, or small additional circuitry can be used for BiST purposes. However, due to limited bandwidth, measurement of complex specifications, such as IQ imbalance, is challenging. In this work, a BiST technique to compute transmitter IQ imbalances using measurements out of a self-mixing envelope detector is proposed. Both the linear and non linear parameters of the RF transmitter path are extracted successfully. We first derive an analytical expression for the output signal. Using this expression, we devise test signals to isolate the effects of gain and phase imbalance, DC offsets, time skews and system nonlinearity from other parameters of the system. Once isolated, these parameters are calculated easily with a few mathematical operations. Simulations and hardware measurements show that the technique can provide accurate characterization of IQ imbalances. One of the glaring advantages of this method is that, the impairments are extracted from analyzing the response at baseband frequency and thereby eliminating the need of high frequency ATE (Automated Test Equipment).
ContributorsByregowda, Srinath (Author) / Ozev, Sule (Thesis advisor) / Cao, Yu (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2012
Description
ABSTRACT

Designers creating the next generation remote sensing enabled smart devices need to overcome the challenges of prevailing ventures including time to market and expense.

To reduce the time and effort involved in initial prototyping, a good reference design is often desired and warranted. This paper provides the necessary reference materials

ABSTRACT

Designers creating the next generation remote sensing enabled smart devices need to overcome the challenges of prevailing ventures including time to market and expense.

To reduce the time and effort involved in initial prototyping, a good reference design is often desired and warranted. This paper provides the necessary reference materials for Designers to implement a wireless solution efficiently and effectively.

This document is intended for users with limited Bluetooth technology experience.

Many sensing-enabled devices require a ‘hard-wire’ or cable link to a host monitoring system. This can limit the potential for product advancements by anchoring the system to a single location preventing portability and the convenience of a remote system. By removing the “wired” or cabled portion from a design, a broader scope of devices becomes feasible.

One common problematic area for these types of sensors is within the internal medicine field. Proximity sensing is far more practical and less invasive to implement than surgical implantation. Bluetooth Low Energy (BLE) systems solve the hard wired problem by decoupling the physical sensor from the host system through a BLE transceiver that can send information to an external monitoring system. This wireless link enables new sensor technology to be leveraged into previously unobtainable markets; such as, internal medicine, wearable devices, and Infotainment to name a few. Wireless technology for sensor systems are a potentially disruptive technology changing the way environmental monitoring is implemented and considered.

With this BLE design reference, products can be created with new capabilities to advance current technologies for military, commercial, industrial and medical sectors in rapid succession.
ContributorsHughes, Clinton Francis (Author) / Blain Christen, Jennifer (Thesis advisor) / Ozev, Sule (Committee member) / Ogras, Umit Y. (Committee member) / Aberle, James T., 1961- (Committee member) / Arizona State University (Publisher)
Created2015
154185-Thumbnail Image.png
Description
Due to high level of integration in RF System on Chip (SOC), the test access points are limited to the baseband and RF inputs/outputs of the system. This limited access poses a big challenge particularly for advanced RF architectures where calibration of internal parameters is necessary and ensure proper operation.

Due to high level of integration in RF System on Chip (SOC), the test access points are limited to the baseband and RF inputs/outputs of the system. This limited access poses a big challenge particularly for advanced RF architectures where calibration of internal parameters is necessary and ensure proper operation. Therefore low-overhead built-in Self-Test (BIST) solution for advanced RF transceiver is proposed. In this dissertation. Firstly, comprehensive BIST solution for RF polar transceivers using on-chip resources is presented. In the receiver, phase and gain mismatches degrade sensitivity and error vector magnitude (EVM). In the transmitter, delay skew between the envelope and phase signals and the finite envelope bandwidth can create intermodulation distortion (IMD) that leads to violation of spectral mask requirements. Characterization and calibration of these parameters with analytical model would reduce the test time and cost considerably. Hence, a technique to measure and calibrate impairments of the polar transceiver in the loop-back mode is proposed.

Secondly, robust amplitude measurement technique for RF BIST application and BIST circuits for loop-back connection are discussed. Test techniques using analytical model are explained and BIST circuits are introduced.

Next, a self-compensating built-in self-test solution for RF Phased Array Mismatch is proposed. In the proposed method, a sinusoidal test signal with unknown amplitude is applied to the inputs of two adjacent phased array elements and measure the baseband output signal after down-conversion. Mathematical modeling of the circuit impairments and phased array behavior indicates that by using two distinct input amplitudes, both of which can remain unknown, it is possible to measure the important parameters of the phased array, such as gain and phase mismatch. In addition, proposed BIST system is designed and fabricated using IBM 180nm process and a prototype four-element phased-array PCB is also designed and fabricated for verifying the proposed method.

Finally, process independent gain measurement via BIST/DUT co-design is explained. Design methodology how to reduce performance impact significantly is discussed.

Simulation and hardware measurements results for the proposed techniques show that the proposed technique can characterize the targeted impairments accurately.
ContributorsJeong, Jae Woong (Author) / Ozev, Sule (Thesis advisor) / Kitchen, Jennifer (Committee member) / Cao, Yu (Committee member) / Ogras, Umit Y. (Committee member) / Arizona State University (Publisher)
Created2015
151228-Thumbnail Image.png
Description
Micro-Electro Mechanical System (MEMS) is the micro-scale technology applying on various fields. Traditional testing strategy of MEMS requires physical stimulus, which leads to high cost specified equipment. Also there are a large number of wafer-level measurements for MEMS. A method of estimation calibration coefficient only by electrical stimulus based wafer

Micro-Electro Mechanical System (MEMS) is the micro-scale technology applying on various fields. Traditional testing strategy of MEMS requires physical stimulus, which leads to high cost specified equipment. Also there are a large number of wafer-level measurements for MEMS. A method of estimation calibration coefficient only by electrical stimulus based wafer level measurements is included in the thesis. Moreover, a statistical technique is introduced that can reduce the number of wafer level measurements, meanwhile obtaining an accurate estimate of unmeasured parameters. To improve estimation accuracy, outlier analysis is the effective technique and merged in the test flow. Besides, an algorithm for optimizing test set is included, also providing numerical estimated prediction error.
ContributorsDeng, Lingfei (Author) / Ozev, Sule (Thesis advisor) / Yu, Hongyu (Committee member) / Christen, Jennifer Blain (Committee member) / Arizona State University (Publisher)
Created2012