Matching Items (10)
Filtering by

Clear all filters

152010-Thumbnail Image.png
Description
Micro Electro Mechanical Systems (MEMS) is one of the fastest growing field in silicon industry. Low cost production is key for any company to improve their market share. MEMS testing is challenging since input to test a MEMS device require physical stimulus like acceleration, pressure etc. Also, MEMS device vary

Micro Electro Mechanical Systems (MEMS) is one of the fastest growing field in silicon industry. Low cost production is key for any company to improve their market share. MEMS testing is challenging since input to test a MEMS device require physical stimulus like acceleration, pressure etc. Also, MEMS device vary with process and requires calibration to make them reliable. This increases test cost and testing time. This challenge can be overcome by combining electrical stimulus based testing along with statistical analysis on MEMS response for electrical stimulus and also limited physical stimulus response data. This thesis proposes electrical stimulus based built in self test(BIST) which can be used to get MEMS data and later this data can be used for statistical analysis. A capacitive MEMS accelerometer is considered to test this BIST approach. This BIST circuit overhead is less and utilizes most of the standard readout circuit. This thesis discusses accelerometer response for electrical stimulus and BIST architecture. As a part of this BIST circuit, a second order sigma delta modulator has been designed. This modulator has a sampling frequency of 1MHz and bandwidth of 6KHz. SNDR of 60dB is achieved with 1Vpp differential input signal and 3.3V supply
ContributorsKundur, Vinay (Author) / Bakkaloglu, Bertan (Committee member) / Ozev, Sule (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2013
152409-Thumbnail Image.png
Description
The applications which use MEMS accelerometer have been on rise and many new fields which are using the MEMS devices have been on rise. The industry is trying to reduce the cost of production of these MEMS devices. These devices are manufactured using micromachining and the interface circuitry is manufactured

The applications which use MEMS accelerometer have been on rise and many new fields which are using the MEMS devices have been on rise. The industry is trying to reduce the cost of production of these MEMS devices. These devices are manufactured using micromachining and the interface circuitry is manufactured using CMOS and the final product is integrated on to a single chip. Amount spent on testing of the MEMS devices make up a considerable share of the total final cost of the device. In order to save the cost and time spent on testing, researchers have been trying to develop different methodologies. At present, MEMS devices are tested using mechanical stimuli to measure the device parameters and for calibration the device. This testing is necessary since the MEMS process is not a very well controlled process unlike CMOS. This is done using an ATE and the cost of using ATE (automatic testing equipment) contribute to 30-40% of the devices final cost. This thesis proposes an architecture which can use an Electrical Signal to stimulate the MEMS device and use the data from the MEMS response in approximating the calibration coefficients efficiently. As a proof of concept, we have designed a BIST (Built-in self-test) circuit for MEMS accelerometer. The BIST has an electrical stimulus generator, Capacitance-to-voltage converter, ∑ ∆ ADC. This thesis explains in detail the design of the Electrical stimulus generator. We have also designed a technique to correlate the parameters obtained from electrical stimuli to those obtained by mechanical stimuli. This method is cost effective since the additional circuitry needed to implement BIST is less since the technique utilizes most of the existing standard readout circuitry already present.
ContributorsJangala Naga, Naveen Sai (Author) / Ozev, Sule (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2014
152170-Thumbnail Image.png
Description
Sliding-Mode Control (SMC) has several benefits over traditional Proportional-Integral-Differential (PID) control in terms of fast transient response, robustness to parameter and component variations, and low sensitivity to loop disturbances. An All-Digital Sliding-Mode (ADSM) controlled DC-DC converter, utilizing single-bit oversampled frequency domain digitizers is proposed. In the proposed approach, feedback and

Sliding-Mode Control (SMC) has several benefits over traditional Proportional-Integral-Differential (PID) control in terms of fast transient response, robustness to parameter and component variations, and low sensitivity to loop disturbances. An All-Digital Sliding-Mode (ADSM) controlled DC-DC converter, utilizing single-bit oversampled frequency domain digitizers is proposed. In the proposed approach, feedback and reference digitizing Analog-to-Digital Converters (ADC) are based on a single-bit, first order Sigma-Delta frequency to digital converter, running at 32MHz over-sampling rate. The ADSM regulator achieves 1% settling time in less than 5uSec for a load variation of 600mA. The sliding-mode controller utilizes a high-bandwidth hysteretic differentiator and an integrator to perform the sliding control law in digital domain. The proposed approach overcomes the steady state error (or DC offset), and limits the switching frequency range, which are the two common problems associated with sliding-mode controllers. The IC is designed and fabricated on a 0.35um CMOS process occupying an active area of 2.72mm-squared. Measured peak efficiency is 83%.
ContributorsDashtestani, Ahmad (Author) / Bakkaloglu, Bertan (Thesis advisor) / Thornton, Trevor (Committee member) / Song, Hongjiang (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2013
151846-Thumbnail Image.png
Description
Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased

Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased efficiency, but at the cost of distortion. Class AB amplifiers have low efficiency, but high linearity. By modulating the supply voltage of a Class AB amplifier to make a Class H amplifier, the efficiency can increase while still maintaining the Class AB level of linearity. A 92dB Power Supply Rejection Ratio (PSRR) Class AB amplifier and a Class H amplifier were designed in a 0.24um process for portable audio applications. Using a multiphase buck converter increased the efficiency of the Class H amplifier while still maintaining a fast response time to respond to audio frequencies. The Class H amplifier had an efficiency above the Class AB amplifier by 5-7% from 5-30mW of output power without affecting the total harmonic distortion (THD) at the design specifications. The Class H amplifier design met all design specifications and showed performance comparable to the designed Class AB amplifier across 1kHz-20kHz and 0.01mW-30mW. The Class H design was able to output 30mW into 16Ohms without any increase in THD. This design shows that Class H amplifiers merit more research into their potential for increasing efficiency of audio amplifiers and that even simple designs can give significant increases in efficiency without compromising linearity.
ContributorsPeterson, Cory (Author) / Bakkaloglu, Bertan (Thesis advisor) / Barnaby, Hugh (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2013
152918-Thumbnail Image.png
Description
Isolated DC/DC converters are used to provide electrical isolation between two supply domain systems. A fully integrated isolated DC/DC converter having no board-level components and fabricated using standard integrated circuits (IC) process is highly desirable in order to increase the system reliability and reduce costs. The isolation between the low-voltage

Isolated DC/DC converters are used to provide electrical isolation between two supply domain systems. A fully integrated isolated DC/DC converter having no board-level components and fabricated using standard integrated circuits (IC) process is highly desirable in order to increase the system reliability and reduce costs. The isolation between the low-voltage side and high-voltage side of the converter is realized by a transformer that transfers energy while blocking the DC loop. The resonant mode power oscillator is used to enable high efficiency power transfer. The on-chip transformer is expected to have high coil inductance, high quality factors and high coupling coefficient to reduce the loss in the oscillation. The performance of a transformer is highly dependent on the vertical structure, horizontal geometry and other indispensable structures that make it compatible with the IC process such as metal fills and patterned ground shield (PGS). With the help of three-dimensional (3-D) electro-magnetic (EM) simulation software, the 3-D transformer model is simulated and the simulation result is got with high accuracy.

In this thesis an on-chip transformer for a fully integrated DC/DC converter using standard IC process is developed. Different types of transformers are modeled and simulated in HFSS. The performances are compared to select the optimum design. The effects of the additional structures including PGS and metal fills are also simulated. The transformer is tested with a network analyzer and the testing results show a good consistency with the simulation results when taking the chip traces, printed circuit board (PCB) traces, bond wires and SMA connectors into account.
ContributorsZhao, Yao (Author) / Bakkaloglu, Bertan (Thesis advisor) / Kiaei, Sayfe (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2014
153113-Thumbnail Image.png
Description
As residential photovoltaic (PV) systems become more and more common and widespread, their system architectures are being developed to maximize power extraction while keeping the cost of associated electronics to a minimum. An architecture that has become popular in recent years is the "DC optimizer" architecture, wherein one DC-DC

As residential photovoltaic (PV) systems become more and more common and widespread, their system architectures are being developed to maximize power extraction while keeping the cost of associated electronics to a minimum. An architecture that has become popular in recent years is the "DC optimizer" architecture, wherein one DC-DC converter is connected to the output of each PV module. The DC optimizer architecture has the advantage of performing maximum power-point tracking (MPPT) at the module level, without the high cost of using an inverter on each module (the "microinverter" architecture). This work details the design of a proposed DC optimizer. The design incorporates a series-input parallel-output topology to implement MPPT at the sub-module level. This topology has some advantages over the more common series-output DC optimizer, including relaxed requirements for the system's inverter. An autonomous control scheme is proposed for the series-connected converters, so that no external control signals are needed for the system to operate, other than sunlight. The DC optimizer in this work is designed with an emphasis on efficiency, and to that end it uses GaN FETs and an active clamp technique to reduce switching and conduction losses. As with any parallel-output converter, phase interleaving is essential to minimize output RMS current losses. This work proposes a novel phase-locked loop (PLL) technique to achieve interleaving among the series-input converters.
ContributorsLuster, Daniel (Author) / Ayyanar, Raja (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2014
150029-Thumbnail Image.png
Description
A dual-channel directional digital hearing aid (DHA) front-end using a fully differential difference amplifier (FDDA) based Microphone interface circuit (MIC) for a capacitive Micro Electro Mechanical Systems (MEMS) microphones and an adaptive-power analog font end (AFE) is presented. The Microphone interface circuit based on FDDA converts

A dual-channel directional digital hearing aid (DHA) front-end using a fully differential difference amplifier (FDDA) based Microphone interface circuit (MIC) for a capacitive Micro Electro Mechanical Systems (MEMS) microphones and an adaptive-power analog font end (AFE) is presented. The Microphone interface circuit based on FDDA converts the capacitance variations into voltage signal, achieves a noise of 32 dB SPL (sound pressure level) and an SNR of 72 dB, additionally it also performs single to differential conversion allowing for fully differential analog signal chain. The analog front-end consists of 40dB VGA and a power scalable continuous time sigma delta ADC, with 68dB SNR dissipating 67u¬W from a 1.2V supply. The ADC implements a self calibrating feedback DAC, for calibrating the 2nd order non-linearity. The VGA and power scalable ADC is fabricated on 0.25 um CMOS TSMC process. The dual channels of the DHA are precisely matched and achieve about 0.5dB gain mismatch, resulting in greater than 5dB directivity index. This will enable a highly integrated and low power DHA
ContributorsNaqvi, Syed Roomi (Author) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Chae, Junseok (Committee member) / Barnby, Hugh (Committee member) / Aberle, James T., 1961- (Committee member) / Arizona State University (Publisher)
Created2011
151039-Thumbnail Image.png
Description
With the rapid expansion of the photovoltaic industry over the last decade, there has been a huge demand in the PV installations in the residential sector. This thesis focuses on the analysis and implementation of a dc-dc boost converter at photovoltaic sub-module level. The thesis also analyses the various topologies

With the rapid expansion of the photovoltaic industry over the last decade, there has been a huge demand in the PV installations in the residential sector. This thesis focuses on the analysis and implementation of a dc-dc boost converter at photovoltaic sub-module level. The thesis also analyses the various topologies like switched capacitors and extended duty ratio which can be practically implemented in the photovoltaic panels. The results obtained in this work have concentrated on the use of novel strategies to substitute the use of central dc-dc converter used in PV module string connection. The implementation of distributed MPPT at the PV sub-module level is also an integral part of this thesis. Using extensive PLECS simulations, this thesis came to the conclusion that with the design of a proper compensation at the dc interconnection of a series or parallel PV Module Integrated Converter string, the central dc-dc converter can be substituted. The dc-ac interconnection voltage remains regulated at all irradiance level even without a dc-dc central converter at the string end. The foundation work for the hardware implementation has also been carried out. Design of parameters for future hardware implementation has also been presented in detail in this thesis.
ContributorsSen, Sourav (Author) / Ayyanar, Raja (Thesis advisor) / Kiaei, Sayfe (Committee member) / Bakkaloglu, Bertan (Committee member) / Arizona State University (Publisher)
Created2012
151010-Thumbnail Image.png
Description
Power supply management is important for MEMS (Micro-Electro-Mechanical-Systems) bio-sensing and chemical sensing applications. The dissertation focuses on discussion of accessibility to different power sources and supply tuning in sensing applications. First, the dissertation presents a high efficiency DC-DC converter for a miniaturized Microbial Fuel Cell (MFC). The miniaturized MFC produces

Power supply management is important for MEMS (Micro-Electro-Mechanical-Systems) bio-sensing and chemical sensing applications. The dissertation focuses on discussion of accessibility to different power sources and supply tuning in sensing applications. First, the dissertation presents a high efficiency DC-DC converter for a miniaturized Microbial Fuel Cell (MFC). The miniaturized MFC produces up to approximately 10µW with an output voltage of 0.4-0.7V. Such a low voltage, which is also load dependent, prevents the MFC to directly drive low power electronics. A PFM (Pulse Frequency Modulation) type DC-DC converter in DCM (Discontinuous Conduction Mode) is developed to address the challenges and provides a load independent output voltage with high conversion efficiency. The DC-DC converter, implemented in UMC 0.18µm technology, has been thoroughly characterized, coupled with the MFC. At 0.9V output, the converter has a peak efficiency of 85% with 9µW load, highest efficiency over prior publication. Energy could be harvested wirelessly and often has profound impacts on system performance. The dissertation reports a side-by-side comparison of two wireless and passive sensing systems: inductive and electromagnetic (EM) couplings for an application of in-situ and real-time monitoring of wafer cleanliness in semiconductor facilities. The wireless system, containing the MEMS sensor works with battery-free operations. Two wireless systems based on inductive and EM couplings have been implemented. The working distance of the inductive coupling system is limited by signal-to-noise-ratio (SNR) while that of the EM coupling is limited by the coupled power. The implemented on-wafer transponders achieve a working distance of 6 cm and 25 cm with a concentration resolution of less than 2% (4 ppb for a 200 ppb solution) for inductive and EM couplings, respectively. Finally, the supply tuning is presented in bio-sensing application to mitigate temperature sensitivity. The FBAR (film bulk acoustic resonator) based oscillator is an attractive method in label-free sensing application. Molecular interactions on FBAR surface induce mass change, which results in resonant frequency shift of FBAR. While FBAR has a high-Q to be sensitive to the molecular interactions, FBAR has finite temperature sensitivity. A temperature compensation technique is presented that improves the temperature coefficient of a 1.625 GHz FBAR-based oscillator from -118 ppm/K to less than 1 ppm/K by tuning the supply voltage of the oscillator. The tuning technique adds no additional component and has a large frequency tunability of -4305 ppm/V.
ContributorsZhang, Xu (Author) / Chae, Junseok (Thesis advisor) / Kiaei, Sayfe (Committee member) / Bakkaloglu, Bertan (Committee member) / Kozicki, Michael (Committee member) / Phillips, Stephen (Committee member) / Arizona State University (Publisher)
Created2012
151246-Thumbnail Image.png
Description
Class D Amplifiers are widely used in portable systems such as mobile phones to achieve high efficiency. The demands of portable electronics for low power consumption to extend battery life and reduce heat dissipation mandate efficient, high-performance audio amplifiers. The high efficiency of Class D amplifiers (CDAs) makes them particularly

Class D Amplifiers are widely used in portable systems such as mobile phones to achieve high efficiency. The demands of portable electronics for low power consumption to extend battery life and reduce heat dissipation mandate efficient, high-performance audio amplifiers. The high efficiency of Class D amplifiers (CDAs) makes them particularly attractive for portable applications. The Digital class D amplifier is an interesting solution to increase the efficiency of embedded systems. However, this solution is not good enough in terms of PWM stage linearity and power supply rejection. An efficient control is needed to correct the error sources in order to get a high fidelity sound quality in the whole audio range of frequencies. A fundamental analysis on various error sources due to non idealities in the power stage have been discussed here with key focus on Power supply perturbations driving the Power stage of a Class D Audio Amplifier. Two types of closed loop Digital Class D architecture for PSRR improvement have been proposed and modeled. Double sided uniform sampling modulation has been used. One of the architecture uses feedback around the power stage and the second architecture uses feedback into digital domain. Simulation & experimental results confirm that the closed loop PSRR & PS-IMD improve by around 30-40 dB and 25 dB respectively.
ContributorsChakraborty, Bijeta (Author) / Bakkaloglu, Bertan (Thesis advisor) / Garrity, Douglas (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2012