Matching Items (3)
Filtering by

Clear all filters

152490-Thumbnail Image.png
Description
This thesis focuses on the influence of a grounded back electrode on the breakdown characteristics. The back electrode is an electrode which attaches at the back side of solid insulation. Insulation with grounded back electrode is a common type of insulation which is adopted in many high voltage power devices.

This thesis focuses on the influence of a grounded back electrode on the breakdown characteristics. The back electrode is an electrode which attaches at the back side of solid insulation. Insulation with grounded back electrode is a common type of insulation which is adopted in many high voltage power devices. While most of the power equipment work under AC voltage, most of the research on back electrode is focused on the DC voltage. Therefore, it is necessary to deeply investigate the influence of the back electrode under AC applied voltage. To investigate the influence of back electrode, the research is separated into two phases, which are the experiment phase and the electric field analysis phase. In the experiments, the breakdown voltages for both with and without back electrode are obtained. The experimental results indicate that the grounded back electrode does have impact on the breakdown characteristics. Then with the breakdown voltage, based on real experiment model, the electric field is analyzed using computer software. From the field simulation result, it is found that the back electrode also influences the electric field distribution. The inter relationship between the electric field and breakdown voltage is the key to explain all the results and phenomena observed during the experiment. Additionally, the influence of insulation barrier on breakdown is also investigated. Compared to the case without ground electrode, inserting a barrier into the gap can more significantly improve breakdown voltage.
ContributorsLiu, Jiajun (Author) / Karady, George G. (Thesis advisor) / Ayyanar, Raja (Committee member) / Holbert, Keith E. (Committee member) / Arizona State University (Publisher)
Created2014
155140-Thumbnail Image.png
Description
In sub transmission systems, many more raptor deaths have been recorded near metal poles rather than wood poles. The metal pole, which is reliable in structure but also grounded, may increase the risk of electrocution when raptors perch on the insulator. This thesis focuses on evaluating the effectiveness of the

In sub transmission systems, many more raptor deaths have been recorded near metal poles rather than wood poles. The metal pole, which is reliable in structure but also grounded, may increase the risk of electrocution when raptors perch on the insulator. This thesis focuses on evaluating the effectiveness of the raptor guard to prevent both debilitating and lethal electrocutions to local wildlife in 69 kV sub transmission systems. First, the two-dimensional (2D) finite difference methods (FDM) were proposed to solve the Poisson and Laplace equations, which describe the electric field. Second, the verification of the FDM algorithm was made based on a parallel-plate capacitor model. Then, the potential and the electric field were simulated by the raptor-insulator model to evaluate the possibility of flashover and leakage current under various conceivable scenarios. Third, several dielectric performance experiments were implemented to gain insight into the physical property of the raptor guard developed by the Salt River Project (SRP) as an example. The proposed initial-tracking-voltage and time-to-track experiments tested the ability of the guard, which is designed to prevent the tracking phenomenon under a contaminated situation such as rain, fog, and snow. A data acquisition also collected the leakage current data for the comparison of maximum raptor tolerance. Furthermore, the puncture voltage of this guard material was performed by the dielectric breakdown voltage experiment in an oil-covered container. With the combination of the model simulation and the experiments in this research, the raptor guard was proven to be practical and beneficial in sub transmission system.
ContributorsShen, Zui (Author) / Gorur, Ravi (Thesis advisor) / Karady, George G. (Committee member) / Holbert, Keith E. (Committee member) / Arizona State University (Publisher)
Created2016
153928-Thumbnail Image.png
Description
The work presented in this manuscript has the overarching theme of radiation. The two forms of radiation of interest are neutrons, i.e. nuclear, and electric fields. The ability to detect such forms of radiation have significant security implications that could also be extended to very practical industrial applications.

The work presented in this manuscript has the overarching theme of radiation. The two forms of radiation of interest are neutrons, i.e. nuclear, and electric fields. The ability to detect such forms of radiation have significant security implications that could also be extended to very practical industrial applications. The goal is therefore to detect, and even image, such radiation sources.

The method to do so revolved around the concept of building large-area sensor arrays. By covering a large area, we can increase the probability of detection and gather more data to build a more complete and clearer view of the environment. Large-area circuitry can be achieved cost-effectively by leveraging the thin-film transistor process of the display industry. With production of displays increasing with the explosion of mobile devices and continued growth in sales of flat panel monitors and television, the cost to build a unit continues to decrease.

Using a thin-film process also allows for flexible electronics, which could be taken advantage of in-house at the Flexible Electronics and Display Center. Flexible electronics implies new form factors and applications that would not otherwise be possible with their single crystal counterparts. To be able to effectively use thin-film technology, novel ways of overcoming the drawbacks of the thin-film process, namely the lower performance scale.

The two deliverable devices that underwent development are a preamplifier used in an active pixel sensor for neutron detection and a passive electric field imaging array. This thesis will cover the theory and process behind realizing these devices.
ContributorsChung, Hugh E (Author) / Allee, David R. (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Holbert, Keith E. (Committee member) / Arizona State University (Publisher)
Created2015