Matching Items (11)
Filtering by

Clear all filters

151561-Thumbnail Image.png
Description
This dissertation presents a new hybrid fault current limiter (FCL) topology that is primarily intended to protect single-phase power equipment. It can however be extended to protect three phase systems but would need three devices to protect each individual phase. In comparison against the existing fault current limiter technology, the

This dissertation presents a new hybrid fault current limiter (FCL) topology that is primarily intended to protect single-phase power equipment. It can however be extended to protect three phase systems but would need three devices to protect each individual phase. In comparison against the existing fault current limiter technology, the salient fea-tures of the proposed topology are: a) provides variable impedance that provides a 50% reduction in prospective fault current; b) near instantaneous response time which is with-in the first half cycle (1-4 ms); c) the use of semiconductor switches as the commutating switch which produces reduced leakage current, reduced losses, improved reliability, and a faster switch time (ns-µs); d) zero losses in steady-state operation; e) use of a Neodym-ium (NdFeB) permanent magnet as the limiting impedance which reduces size, cost, weight, eliminates DC biasing and cooling costs; f) use of Pulse Width Modulation (PWM) to control the magnitude of the fault current to a user's desired level. g) experi-mental test system is developed and tested to prove the concepts of the proposed FCL. This dissertation presents the proposed topology and its working principle backed up with numerical verifications, simulation results, and hardware implementation results. Conclu-sions and future work are also presented.
ContributorsPrigmore, Jay (Author) / Karady, George G. (Thesis advisor) / Ayyanar, Raja (Committee member) / Holbert, Keith E. (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2013
152490-Thumbnail Image.png
Description
This thesis focuses on the influence of a grounded back electrode on the breakdown characteristics. The back electrode is an electrode which attaches at the back side of solid insulation. Insulation with grounded back electrode is a common type of insulation which is adopted in many high voltage power devices.

This thesis focuses on the influence of a grounded back electrode on the breakdown characteristics. The back electrode is an electrode which attaches at the back side of solid insulation. Insulation with grounded back electrode is a common type of insulation which is adopted in many high voltage power devices. While most of the power equipment work under AC voltage, most of the research on back electrode is focused on the DC voltage. Therefore, it is necessary to deeply investigate the influence of the back electrode under AC applied voltage. To investigate the influence of back electrode, the research is separated into two phases, which are the experiment phase and the electric field analysis phase. In the experiments, the breakdown voltages for both with and without back electrode are obtained. The experimental results indicate that the grounded back electrode does have impact on the breakdown characteristics. Then with the breakdown voltage, based on real experiment model, the electric field is analyzed using computer software. From the field simulation result, it is found that the back electrode also influences the electric field distribution. The inter relationship between the electric field and breakdown voltage is the key to explain all the results and phenomena observed during the experiment. Additionally, the influence of insulation barrier on breakdown is also investigated. Compared to the case without ground electrode, inserting a barrier into the gap can more significantly improve breakdown voltage.
ContributorsLiu, Jiajun (Author) / Karady, George G. (Thesis advisor) / Ayyanar, Raja (Committee member) / Holbert, Keith E. (Committee member) / Arizona State University (Publisher)
Created2014
149934-Thumbnail Image.png
Description
This research work describes the design of a fault current limiter (FCL) using digital logic and a microcontroller based data acquisition system for an ultra fast pilot protection system. These systems have been designed according to the requirements of the Future Renewable Electric Energy Delivery and Management (FREEDM) system (or

This research work describes the design of a fault current limiter (FCL) using digital logic and a microcontroller based data acquisition system for an ultra fast pilot protection system. These systems have been designed according to the requirements of the Future Renewable Electric Energy Delivery and Management (FREEDM) system (or loop), a 1 MW green energy hub. The FREEDM loop merges advanced power electronics technology with information tech-nology to form an efficient power grid that can be integrated with the existing power system. With the addition of loads to the FREEDM system, the level of fault current rises because of increased energy flow to supply the loads, and this requires the design of a limiter which can limit this current to a level which the existing switchgear can interrupt. The FCL limits the fault current to around three times the rated current. Fast switching Insulated-gate bipolar transistor (IGBT) with its gate control logic implements a switching strategy which enables this operation. A complete simulation of the system was built on Simulink and it was verified that the FCL limits the fault current to 1000 A compared to more than 3000 A fault current in the non-existence of a FCL. This setting is made user-defined. In FREEDM system, there is a need to interrupt a fault faster or make intelligent deci-sions relating to fault events, to ensure maximum availability of power to the loads connected to the system. This necessitates fast acquisition of data which is performed by the designed data acquisition system. The microcontroller acquires the data from a current transformer (CT). Mea-surements are made at different points in the FREEDM system and merged together, to input it to the intelligent protection algorithm that has been developed by another student on the project. The algorithm will generate a tripping signal in the event of a fault. The developed hardware and the programmed software to accomplish data acquisition and transmission are presented here. The designed FCL ensures that the existing switchgear equipments need not be replaced thus aiding future power system expansion. The developed data acquisition system enables fast fault sensing in protection schemes improving its reliability.
ContributorsThirumalai, Arvind (Author) / Karady, George G. (Thesis advisor) / Vittal, Vijay (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2011
151013-Thumbnail Image.png
Description
This research presents potential and electric field calculations on medium voltage (MV) epoxy insulated outdoor current transformers (CTs) using a numeri-cal calculation approach. Two designs of MV dry-type epoxy insulated CTs were modeled using 3D field simulation software COULOMB® 9.0. Potential and elec-tric fields were calculated based on boundary element

This research presents potential and electric field calculations on medium voltage (MV) epoxy insulated outdoor current transformers (CTs) using a numeri-cal calculation approach. Two designs of MV dry-type epoxy insulated CTs were modeled using 3D field simulation software COULOMB® 9.0. Potential and elec-tric fields were calculated based on boundary element method. Different condi-tions such as dry exterior surface, wet exterior surface and internal voids were considered. The research demonstrates that the presence of internal conductors in CTs results in a less severe surface electric field distribution when compared to outdoor insulators of the same voltage range and type. The high electric field near the exited end triple-point of the CT reduces. This remained true even under wet conditions establishing better outdoor performance of CTs than outdoor insulators which have no internal conductors. The effect of internal conductors on voids within the insulation structure was also established. As a down side, internal voids in CTs experience higher electric field stress than in conductor-less insulators. The work recognizes that internal conducting parts in dry type CTs improves their outdoor performance when compared to electrical equipment without internal conductors.
ContributorsLakshmichand Jain, Sandeep Kumar (Author) / Gorur, Ravi (Thesis advisor) / Karady, George G. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2012
151080-Thumbnail Image.png
Description
Electric utilities are exploring new technologies to cope up with the in-crease in electricity demand and power transfer capabilities of transmission lines. Compact transmission lines and high phase order systems are few of the techniques which enhance the power transfer capability of transmission lines without requiring any additional right-of-way. This

Electric utilities are exploring new technologies to cope up with the in-crease in electricity demand and power transfer capabilities of transmission lines. Compact transmission lines and high phase order systems are few of the techniques which enhance the power transfer capability of transmission lines without requiring any additional right-of-way. This research work investigates the impact of compacting high voltage transmission lines and high phase order systems on the surface electric field of composite insulators, a key factor deciding service performance of insulators. The electric field analysis was done using COULOMB 9.0, a 3D software package which uses a numerical analysis technique based on Boundary Element Method (BEM). 3D models of various types of standard transmission towers used for 230 kV, 345 kV and 500 kV level were modeled with different insulators con-figurations and number of circuits. Standard tower configuration models were compacted by reducing the clearance from live parts in steps of 10%. It was found that the standard tower configuration can be compacted to 30% without violating the minimum safety clearance mandated by NESC standards. The study shows that surface electric field on insulators for few of the compact structures exceeded the maximum allowable limit even if corona rings were installed. As a part of this study, a Gaussian process model based optimization pro-gram was developed to find the optimum corona ring dimensions to limit the electric field within stipulated values. The optimization program provides the dimen-sions of corona ring, its placement from the high voltage end for a given dry arc length of insulator and system voltage. JMP, a statistical computer package and AMPL, a computer language widely used form optimization was used for optimi-zation program. The results obtained from optimization program validated the industrial standards.
ContributorsMohan, Nihal (Author) / Gorur, Ravi S. (Thesis advisor) / Heydt, Gerald T. (Committee member) / Vittal, Vijay (Committee member) / Arizona State University (Publisher)
Created2012
154793-Thumbnail Image.png
Description
Overhead high voltage transmission lines are widely used around the world to deliver power to customers because of their low losses and high transmission capability. Well-coordinated insulation systems are capable of withstanding lightning and switching surge voltages. However, flashover is a serious issue to insulation systems, especially if the insulator

Overhead high voltage transmission lines are widely used around the world to deliver power to customers because of their low losses and high transmission capability. Well-coordinated insulation systems are capable of withstanding lightning and switching surge voltages. However, flashover is a serious issue to insulation systems, especially if the insulator is covered by a pollution layer. Many experiments in the laboratory have been conducted to investigate this issue. Since most experiments are time-consuming and costly, good mathematical models could contribute to predicting the insulator flashover performance as well as guide the experiments. This dissertation proposes a new statistical model to calculate the flashover probability of insulators under different supply voltages and contamination levels. An insulator model with water particles in the air is simulated to analyze the effects of rain and mist on flashover performance in reality. Additionally, insulator radius and number of sheds affect insulator surface resistivity and leakage distance. These two factors are studied to improve the efficiency of insulator design. This dissertation also discusses the impact of insulator surface hydrophobicity on flashover voltage.

Because arc propagation is a stochastic process, an arc could travel on different paths based on the electric field distribution. Some arc paths jump between insulator sheds instead of travelling along the insulator surfaces. The arc jumping could shorten the leakage distance and intensify the electric field. Therefore, the probabilities of arc jumping at different locations of sheds are also calculated in this dissertation.

The new simulation model is based on numerical electric field calculation and random walk theory. The electric field is calculated by the variable-grid finite difference method. The random walk theory from the Monte Carlo Method is utilized to describe the random propagation process of arc growth. This model will permit insulator engineers to design the reasonable geometry of insulators, to reduce the flashover phenomena under a wide range of operating conditions.
ContributorsHe, Jiahong (Author) / Gorur, Ravi (Thesis advisor) / Ayyanar, Raja (Committee member) / Holbert, Keith E. (Committee member) / Karady, George G. (Committee member) / Arizona State University (Publisher)
Created2016
155140-Thumbnail Image.png
Description
In sub transmission systems, many more raptor deaths have been recorded near metal poles rather than wood poles. The metal pole, which is reliable in structure but also grounded, may increase the risk of electrocution when raptors perch on the insulator. This thesis focuses on evaluating the effectiveness of the

In sub transmission systems, many more raptor deaths have been recorded near metal poles rather than wood poles. The metal pole, which is reliable in structure but also grounded, may increase the risk of electrocution when raptors perch on the insulator. This thesis focuses on evaluating the effectiveness of the raptor guard to prevent both debilitating and lethal electrocutions to local wildlife in 69 kV sub transmission systems. First, the two-dimensional (2D) finite difference methods (FDM) were proposed to solve the Poisson and Laplace equations, which describe the electric field. Second, the verification of the FDM algorithm was made based on a parallel-plate capacitor model. Then, the potential and the electric field were simulated by the raptor-insulator model to evaluate the possibility of flashover and leakage current under various conceivable scenarios. Third, several dielectric performance experiments were implemented to gain insight into the physical property of the raptor guard developed by the Salt River Project (SRP) as an example. The proposed initial-tracking-voltage and time-to-track experiments tested the ability of the guard, which is designed to prevent the tracking phenomenon under a contaminated situation such as rain, fog, and snow. A data acquisition also collected the leakage current data for the comparison of maximum raptor tolerance. Furthermore, the puncture voltage of this guard material was performed by the dielectric breakdown voltage experiment in an oil-covered container. With the combination of the model simulation and the experiments in this research, the raptor guard was proven to be practical and beneficial in sub transmission system.
ContributorsShen, Zui (Author) / Gorur, Ravi (Thesis advisor) / Karady, George G. (Committee member) / Holbert, Keith E. (Committee member) / Arizona State University (Publisher)
Created2016
155471-Thumbnail Image.png
Description
After a major disturbance, the power system response is highly dependent on protection schemes and system dynamics. Improving power systems situational awareness requires proper and simultaneous modeling of both protection schemes and dynamic characteristics in power systems analysis tools. Historical information and ex-post analysis of blackouts reaffirm the critical role

After a major disturbance, the power system response is highly dependent on protection schemes and system dynamics. Improving power systems situational awareness requires proper and simultaneous modeling of both protection schemes and dynamic characteristics in power systems analysis tools. Historical information and ex-post analysis of blackouts reaffirm the critical role of protective devices in cascading events, thereby confirming the necessity to represent protective functions in transient stability studies. This dissertation is aimed at studying the importance of representing protective relays in power system dynamic studies. Although modeling all of the protective relays within transient stability studies may result in a better estimation of system behavior, representing, updating, and maintaining the protection system data becomes an insurmountable task. Inappropriate or outdated representation of the relays may result in incorrect assessment of the system behavior. This dissertation presents a systematic method to determine essential relays to be modeled in transient stability studies. The desired approach should identify protective relays that are critical for various operating conditions and contingencies. The results of the transient stability studies confirm that modeling only the identified critical protective relays is sufficient to capture system behavior for various operating conditions and precludes the need to model all of the protective relays. Moreover, this dissertation proposes a method that can be implemented to determine the appropriate location of out-of-step blocking relays. During unstable power swings, a generator or group of generators may accelerate or decelerate leading to voltage depression at the electrical center along with generator tripping. This voltage depression may cause protective relay mis-operation and unintentional separation of the system. In order to avoid unintentional islanding, the potentially mis-operating relays should be blocked from tripping with the use of out-of-step blocking schemes. Blocking these mis-operating relays, combined with an appropriate islanding scheme, help avoid a system wide collapse. The proposed method is tested on data from the Western Electricity Coordinating Council. A triple line outage of the California-Oregon Intertie is studied. The results show that the proposed method is able to successfully identify proper locations of out-of-step blocking scheme.
ContributorsHedman, Mojdeh Khorsand (Author) / Vittal, Vijay (Thesis advisor) / Ayyanar, Raja (Committee member) / Pal, Anamitra (Committee member) / Qin, Jiangchao (Committee member) / Arizona State University (Publisher)
Created2017
149510-Thumbnail Image.png
Description
Optical Instrument Transformers (OIT) have been developed as an alternative to traditional instrument transformers (IT). The question "Can optical instrument transformers substitute for the traditional transformers?" is the main motivation of this study. Finding the answer for this question and developing complete models are the contributions of this work. Dedicated

Optical Instrument Transformers (OIT) have been developed as an alternative to traditional instrument transformers (IT). The question "Can optical instrument transformers substitute for the traditional transformers?" is the main motivation of this study. Finding the answer for this question and developing complete models are the contributions of this work. Dedicated test facilities are developed so that the steady state and transient performances of analog outputs of a magnetic current transformer (CT) and a magnetic voltage transformer (VT) are compared with that of an optical current transformer (OCT) and an optical voltage transformer (OVT) respectively. Frequency response characteristics of OIT outputs are obtained. Comparison results show that OITs have a specified accuracy of 0.3% in all cases. They are linear, and DC offset does not saturate the systems. The OIT output signal has a 40~60 μs time delay, but this is typically less than the equivalent phase difference permitted by the IEEE and IEC standards for protection applications. Analog outputs have significantly higher bandwidths (adjustable to 20 to 40 kHz) than the IT. The digital output signal bandwidth (2.4 kHz) of an OCT is significantly lower than the analog signal bandwidth (20 kHz) due to the sampling rates involved. The OIT analog outputs may have significant white noise of 6%, but the white noise does not affect accuracy or protection performance. Temperatures up to 50oC do not adversely affect the performance of the OITs. Three types of models are developed for analog outputs: analog, digital, and complete models. Well-known mathematical methods, such as network synthesis and Jones calculus methods are applied. The developed models are compared with experiment results and are verified with simulation programs. Results show less than 1.5% for OCT and 2% for OVT difference and that the developed models can be used for power system simulations and the method used for the development can be used to develop models for all other brands of optical systems. The communication and data transfer between the all-digital protection systems is investigated by developing a test facility for all digital protection systems. Test results show that different manufacturers' relays and transformers based on the IEC standard can serve the power system successfully.
ContributorsKucuksari, Sadik (Author) / Karady, George G. (Thesis advisor) / Heydt, Gerald T (Committee member) / Holbert, Keith E. (Committee member) / Ayyanar, Raja (Committee member) / Farmer, Richard (Committee member) / Arizona State University (Publisher)
Created2010
149529-Thumbnail Image.png
Description
This research work illustrates the use of software packages based on the concept of nu-merical analysis technique to evaluate the electric field and voltage distribution along composite insulators for system voltages ranging from 138 kV up to 1200 kV ac. A part of the calculations was made using the 3D

This research work illustrates the use of software packages based on the concept of nu-merical analysis technique to evaluate the electric field and voltage distribution along composite insulators for system voltages ranging from 138 kV up to 1200 kV ac. A part of the calculations was made using the 3D software package, COULOMB 8.0, based on the concept of Boundary Element Method (BEM). The electric field was calculated under dry and wet conditions. Compo-site insulators experience more electrical stress when compared to porcelain and are also more prone to damage caused by corona activity. The work presented here investigates the effect of corona rings of specific dimensions and bundled conductors on the electric field along composite insulators. Inappropriate placement or dimensions of corona rings could enhance the electric field instead of mitigating it. Corona ring optimization for a 1000 kV composite insulator was per-formed by changing parameters of the ring, such as the diameter of the ring, thickness of the ring tube and the projection of the ring from the high voltage energized end fitting. Grading rings were designed for Ultra High Voltage (UHV) systems that use two units of composite insulators in pa-rallel. The insulation distance, which bears 50% of the total applied voltage, is raised by 61% with the grading ring installed, when compared to the distance without the grading ring. In other words, the electric field and voltage distribution was found to be more linear with the application of grad-ing rings. The second part of this project was carried out using the EPRI designed software EPIC. This is based on the concept of Charge Simulation method (CSM). Comparisons were made be-tween electric field magnitude along composite insulators used for suspension and dead end configuration for system voltages ranging from 138 kV to 500 kV. It was found that the dead end composite insulators experience significantly higher electrical stress when compared to their suspension counterpart. It was also concluded that this difference gets more prominent as the system voltage increases. A comparison made between electric field distribution along composite insulators used in single and double dead end structures suggested that the electric stress experienced by the single dead end composite insulators is relatively higher when compared to double dead end composite insulators.
ContributorsDoshi, Tanushri (Author) / Gorur, Ravi S (Thesis advisor) / Vittal, Vijay (Committee member) / Farmer, Richard (Committee member) / Arizona State University (Publisher)
Created2010