Matching Items (2)
Filtering by

Clear all filters

134823-Thumbnail Image.png
Description
Imaging using electric fields could provide a cheaper, safer, and easier alternative to the standard methods used for imaging. The viability of electric field imaging at very low frequencies using D-dot sensors has already been investigated and proven. The new goal is to determine if imaging is viable at high

Imaging using electric fields could provide a cheaper, safer, and easier alternative to the standard methods used for imaging. The viability of electric field imaging at very low frequencies using D-dot sensors has already been investigated and proven. The new goal is to determine if imaging is viable at high frequencies. In order to accomplish this, the operational amplifiers used in the very low frequency imaging test set up must be replaced with ones that have higher bandwidth. The trade-off of using these amplifiers is that they have a typical higher input leakage current on the order of 100 compared to the standard. Using a modified circuit design technique that reduces input leakage current of the operational amplifiers used in the imaging test setup, a printed circuit board with D-dot sensors is fabricated to identify the frequency limitations of electric field imaging. Data is collected at both low and high frequencies as well as low peak voltage. The data is then analyzed to determine the range in intensity of electric field and frequency that this circuit low-leakage design can accurately detect a signal. Data is also collected using another printed circuit board that uses the standard circuit design technique. The data taken from the different boards is compared to identify if the modified circuit design technique allows for higher sensitivity imaging. In conclusion, this research supports that using low-leakage design techniques can allow for signal detection comparable to that of the standard circuit design. The low-leakage design allowed for sensitivity within a factor two to that of the standard design. Although testing at higher frequencies was limited, signal detection for the low-leakage design was reliable up until 97 kHz, but further experimentation is needed to determine the upper frequency limits.
ContributorsLin, Richard (Co-author) / Angell, Tyler (Co-author) / Allee, David (Thesis director) / Chung, Hugh (Committee member) / Electrical Engineering Program (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135111-Thumbnail Image.png
Description
The field of computed tomography involves reconstructing an image from lower dimensional projections. This is particularly useful for visualizing the inner structure of an object. Presented here is an imaging setup meant for use in computed tomography applications. This imaging setup relies on imaging electric fields through active interrogation. Models

The field of computed tomography involves reconstructing an image from lower dimensional projections. This is particularly useful for visualizing the inner structure of an object. Presented here is an imaging setup meant for use in computed tomography applications. This imaging setup relies on imaging electric fields through active interrogation. Models designed in Ansys Maxwell are used to simulate this setup and produce 2D images of an object from 1D projections to verify electric field imaging as a potential route for future computed tomography applications. The results of this thesis show reconstructed images that resemble the object being imaged using a filtered back projection method of reconstruction. This work concludes that electric field imaging is a promising option for computed tomography applications.
ContributorsDrummond, Zachary Daniel (Author) / Allee, David (Thesis director) / Cochran, Douglas (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12