Matching Items (4)
Filtering by

Clear all filters

153915-Thumbnail Image.png
Description
Modern measurement schemes for linear dynamical systems are typically designed so that different sensors can be scheduled to be used at each time step. To determine which sensors to use, various metrics have been suggested. One possible such metric is the observability of the system. Observability is a binary condition

Modern measurement schemes for linear dynamical systems are typically designed so that different sensors can be scheduled to be used at each time step. To determine which sensors to use, various metrics have been suggested. One possible such metric is the observability of the system. Observability is a binary condition determining whether a finite number of measurements suffice to recover the initial state. However to employ observability for sensor scheduling, the binary definition needs to be expanded so that one can measure how observable a system is with a particular measurement scheme, i.e. one needs a metric of observability. Most methods utilizing an observability metric are about sensor selection and not for sensor scheduling. In this dissertation we present a new approach to utilize the observability for sensor scheduling by employing the condition number of the observability matrix as the metric and using column subset selection to create an algorithm to choose which sensors to use at each time step. To this end we use a rank revealing QR factorization algorithm to select sensors. Several numerical experiments are used to demonstrate the performance of the proposed scheme.
ContributorsIlkturk, Utku (Author) / Gelb, Anne (Thesis advisor) / Platte, Rodrigo (Thesis advisor) / Cochran, Douglas (Committee member) / Renaut, Rosemary (Committee member) / Armbruster, Dieter (Committee member) / Arizona State University (Publisher)
Created2015
134823-Thumbnail Image.png
Description
Imaging using electric fields could provide a cheaper, safer, and easier alternative to the standard methods used for imaging. The viability of electric field imaging at very low frequencies using D-dot sensors has already been investigated and proven. The new goal is to determine if imaging is viable at high

Imaging using electric fields could provide a cheaper, safer, and easier alternative to the standard methods used for imaging. The viability of electric field imaging at very low frequencies using D-dot sensors has already been investigated and proven. The new goal is to determine if imaging is viable at high frequencies. In order to accomplish this, the operational amplifiers used in the very low frequency imaging test set up must be replaced with ones that have higher bandwidth. The trade-off of using these amplifiers is that they have a typical higher input leakage current on the order of 100 compared to the standard. Using a modified circuit design technique that reduces input leakage current of the operational amplifiers used in the imaging test setup, a printed circuit board with D-dot sensors is fabricated to identify the frequency limitations of electric field imaging. Data is collected at both low and high frequencies as well as low peak voltage. The data is then analyzed to determine the range in intensity of electric field and frequency that this circuit low-leakage design can accurately detect a signal. Data is also collected using another printed circuit board that uses the standard circuit design technique. The data taken from the different boards is compared to identify if the modified circuit design technique allows for higher sensitivity imaging. In conclusion, this research supports that using low-leakage design techniques can allow for signal detection comparable to that of the standard circuit design. The low-leakage design allowed for sensitivity within a factor two to that of the standard design. Although testing at higher frequencies was limited, signal detection for the low-leakage design was reliable up until 97 kHz, but further experimentation is needed to determine the upper frequency limits.
ContributorsLin, Richard (Co-author) / Angell, Tyler (Co-author) / Allee, David (Thesis director) / Chung, Hugh (Committee member) / Electrical Engineering Program (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135111-Thumbnail Image.png
Description
The field of computed tomography involves reconstructing an image from lower dimensional projections. This is particularly useful for visualizing the inner structure of an object. Presented here is an imaging setup meant for use in computed tomography applications. This imaging setup relies on imaging electric fields through active interrogation. Models

The field of computed tomography involves reconstructing an image from lower dimensional projections. This is particularly useful for visualizing the inner structure of an object. Presented here is an imaging setup meant for use in computed tomography applications. This imaging setup relies on imaging electric fields through active interrogation. Models designed in Ansys Maxwell are used to simulate this setup and produce 2D images of an object from 1D projections to verify electric field imaging as a potential route for future computed tomography applications. The results of this thesis show reconstructed images that resemble the object being imaged using a filtered back projection method of reconstruction. This work concludes that electric field imaging is a promising option for computed tomography applications.
ContributorsDrummond, Zachary Daniel (Author) / Allee, David (Thesis director) / Cochran, Douglas (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
155818-Thumbnail Image.png
Description
Electric field imaging allows for a low cost, compact, non-invasive, non-ionizing alternative to other methods of imaging. It has many promising industrial applications including security, safely imaging power lines at construction sites, finding sources of electromagnetic interference, geo-prospecting, and medical imaging. The work presented in this dissertation concerns

Electric field imaging allows for a low cost, compact, non-invasive, non-ionizing alternative to other methods of imaging. It has many promising industrial applications including security, safely imaging power lines at construction sites, finding sources of electromagnetic interference, geo-prospecting, and medical imaging. The work presented in this dissertation concerns low frequency electric field imaging: the physics, hardware, and various methods of achieving it.

Electric fields have historically been notoriously difficult to work with due to how intrinsically noisy the data is in electric field sensors. As a first contribution, an in-depth study demonstrates just how prevalent electric field noise is. In field tests, various cables were placed underneath power lines. Despite being shielded, the 60 Hz power line signal readily penetrated several types of cables.

The challenges of high noise levels were largely addressed by connecting the output of an electric field sensor to a lock-in amplifier. Using the more accurate means of collecting electric field data, D-dot sensors were arrayed in a compact grid to resolve electric field images as a second contribution. This imager has successfully captured electric field images of live concealed wires and electromagnetic interference.

An active method was developed as a third contribution. In this method, distortions created by objects when placed in a known electric field are read. This expands the domain of what can be imaged because the object does not need to be a time-varying electric field source. Images of dielectrics (e.g. bodies of water) and DC wires were captured using this new method.

The final contribution uses a collection of one-dimensional electric field images, i.e. projections, to reconstruct a two-dimensional image. This was achieved using algorithms based in computed tomography such as filtered backprojection. An algebraic approach was also used to enforce sparsity regularization with the L1 norm, further improving the quality of some images.
ContributorsChung, Hugh Emanuel (Author) / Allee, David R. (Thesis advisor) / Cochran, Douglas (Committee member) / Aberle, James T (Committee member) / Phillips, Stephen M (Committee member) / Arizona State University (Publisher)
Created2017