Matching Items (12)
Filtering by

Clear all filters

135574-Thumbnail Image.png
Description
The purpose of our research was to develop recommendations and/or strategies for Company A's data center group in the context of the server CPU chip industry. We used data collected from the International Data Corporation (IDC) that was provided by our team coaches, and data that is accessible on the

The purpose of our research was to develop recommendations and/or strategies for Company A's data center group in the context of the server CPU chip industry. We used data collected from the International Data Corporation (IDC) that was provided by our team coaches, and data that is accessible on the internet. As the server CPU industry expands and transitions to cloud computing, Company A's Data Center Group will need to expand their server CPU chip product mix to meet new demands of the cloud industry and to maintain high market share. Company A boasts leading performance with their x86 server chips and 95% market segment share. The cloud industry is dominated by seven companies Company A calls "The Super 7." These seven companies include: Amazon, Google, Microsoft, Facebook, Alibaba, Tencent, and Baidu. In the long run, the growing market share of the Super 7 could give them substantial buying power over Company A, which could lead to discounts and margin compression for Company A's main growth engine. Additionally, in the long-run, the substantial growth of the Super 7 could fuel the development of their own design teams and work towards making their own server chips internally, which would be detrimental to Company A's data center revenue. We first researched the server industry and key terminology relevant to our project. We narrowed our scope by focusing most on the cloud computing aspect of the server industry. We then researched what Company A has already been doing in the context of cloud computing and what they are currently doing to address the problem. Next, using our market analysis, we identified key areas we think Company A's data center group should focus on. Using the information available to us, we developed our strategies and recommendations that we think will help Company A's Data Center Group position themselves well in an extremely fast growing cloud computing industry.
ContributorsJurgenson, Alex (Co-author) / Nguyen, Duy (Co-author) / Kolder, Sean (Co-author) / Wang, Chenxi (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / Department of Finance (Contributor) / Department of Management (Contributor) / Department of Information Systems (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Accountancy (Contributor) / WPC Graduate Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135654-Thumbnail Image.png
Description
Company X has developed RealSenseTM technology, a depth sensing camera that provides machines the ability to capture three-dimensional spaces along with motion within these spaces. The goal of RealSense was to give machines human-like senses, such as knowing how far away objects are and perceiving the surrounding environment. The key

Company X has developed RealSenseTM technology, a depth sensing camera that provides machines the ability to capture three-dimensional spaces along with motion within these spaces. The goal of RealSense was to give machines human-like senses, such as knowing how far away objects are and perceiving the surrounding environment. The key issue for Company X is how to commercialize RealSense's depth recognition capabilities. This thesis addresses the problem by examining which markets to address and how to monetize this technology. The first part of the analysis identified potential markets for RealSense. This was achieved by evaluating current markets that could benefit from the camera's gesture recognition, 3D scanning, and depth sensing abilities. After identifying seven industries where RealSense could add value, a model of the available, addressable, and obtainable market sizes was developed for each segment. Key competitors and market dynamics were used to estimate the portion of the market that Company X could capture. These models provided a forecast of the discounted gross profits that could be earned over the next five years. These forecasted gross profits, combined with an examination of the competitive landscape and synergistic opportunities, resulted in the selection of the three segments thought to be most profitable to Company X. These segments are smart home, consumer drones, and automotive. The final part of the analysis investigated entrance strategies. Company X's competitive advantages in each space were found by examining the competition, both for the RealSense camera in general and other technologies specific to each industry. Finally, ideas about ways to monetize RealSense were developed by exploring various revenue models and channels.
ContributorsDunn, Nicole (Co-author) / Boudreau, Thomas (Co-author) / Kinzy, Chris (Co-author) / Radigan, Thomas (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / WPC Graduate Programs (Contributor) / Department of Psychology (Contributor) / Department of Finance (Contributor) / School of Accountancy (Contributor) / Department of Economics (Contributor) / School of Mathematical and Statistical Science (Contributor) / W. P. Carey School of Business (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136015-Thumbnail Image.png
Description
Our thesis project aims to evaluate a major semiconductor company's (The Company) substrate supplier strategy in order to find the ideal number of suppliers that minimizes fixed cost and supplier power. With The Company spending roughly $2.2 billion annually on substrates, supplier strategy has a significant impact on their costs.

Our thesis project aims to evaluate a major semiconductor company's (The Company) substrate supplier strategy in order to find the ideal number of suppliers that minimizes fixed cost and supplier power. With The Company spending roughly $2.2 billion annually on substrates, supplier strategy has a significant impact on their costs. As a general rule in micro processing, the circuitry of the processor becomes twice as dense every two years. The substrate, being the pathway through which the process or with the motherboard, must become more advanced as well, although the technology does not grow at nearly the same speed. Leading the way in their industry, The Company is at the forefront of technology and produces the world's most advanced processing units. The suppliers The Company purchases from must be innovators in their own respective fields in order to be capable of handling such "bleeding-edge" technology; this requires a supplier to make a commitment to continuously work towards meeting The Company's constantly changing technological requirements. The ultimate goal of this project is to determine the ideal number of substrate suppliers that balances the effects of production costs and buying power to give the company the best overall purchase price.
ContributorsWright, Brian (Author) / Hertzel, Michael (Thesis director) / Simonson, Mark (Committee member) / Shirts, John (Committee member) / Barrett, The Honors College (Contributor)
Created2012-05
137136-Thumbnail Image.png
Description
This thesis discusses methodology used to assess the financial health of Company X's suppliers. Each suppliers' industry characteristics and key risk exposures are identified using the Porter's Five Forces. Along with qualitative analysis, financial data is analyzed with the Altman Z-Scores, forecasted financial statements, and comparative ratio analysis. The focus

This thesis discusses methodology used to assess the financial health of Company X's suppliers. Each suppliers' industry characteristics and key risk exposures are identified using the Porter's Five Forces. Along with qualitative analysis, financial data is analyzed with the Altman Z-Scores, forecasted financial statements, and comparative ratio analysis. The focus is narrowed down throughout the process to enable further investigation on Supplier E and the semiconductor-memory industry.The procedure and results of the analysis lead to the final recommendation to Company X on how it should assess the financial health of suppliers in the semiconductor-memory industry, and possibly other industries, using our methodology.
ContributorsBanda, Janelle (Co-author) / McDermott, Eric (Co-author) / Park, Hye Jun (Co-author) / Corral, Esteban (Co-author) / Hertzel, Michael (Thesis director) / Simonson, Mark (Committee member) / Schulz, Matthew (Committee member) / Barrett, The Honors College (Contributor) / Department of Finance (Contributor) / School of Mathematical and Natural Sciences (Contributor) / School of Accountancy (Contributor) / Economics Program in CLAS (Contributor)
Created2014-05
135249-Thumbnail Image.png
Description
New Venture Group, a student-run consulting organization at ASU, collaborated with representatives from Intel Corporation to determine current best supplier management practices in the area of capital equipment procurement. The New Venture Group team accomplished this goal by completing the following deliverables: (1) Research and consolidate best practices for managing

New Venture Group, a student-run consulting organization at ASU, collaborated with representatives from Intel Corporation to determine current best supplier management practices in the area of capital equipment procurement. The New Venture Group team accomplished this goal by completing the following deliverables: (1) Research and consolidate best practices for managing capital equipment suppliers. (2) Interview suppliers of capital equipment in the semiconductor industry to understand their motivators. (3) Examine top supply chain companies that utilize capital equipment manufacturers within their procurement systems. (4) Gather data and knowledge in conjunction with Intel Corporation's current practices to improve the effectiveness of the company's supplier management techniques regarding capital equipment manufacturers. The thesis report outlines the key insights and recommendations that our team extracted from the research that we performed. Our team analyzed peer-reviewed journal articles, conducted interviews with suppliers of capital equipment to semiconductor manufacturers, and surveyed buyers at top companies to reach important key insights. We then used these insights to develop the following strategies to improve Intel's capital equipment supplier management structure: All Suppliers 1. Allow high-performance suppliers to select one reward from an established portfolio of incentives. 2. Increase measurement frequency for specific metrics. 3. Use collaborative two-way measurement with a corresponding balanced scorecard. Key Suppliers of Critical Products 4. Conduct gap analysis through supplier self-assessments. 5. Implement collaborative target pricing. 6. Delegate an Ombudsman. 7. Create a value map to determine the strengths and incentivize collaboration. 8. Create comparison charts comparing supplier technological competencies versus Intel's product developments. 9. Establish a systematized product development process and strategic sourcing strategy that supports the continuation of Moore's Law.
ContributorsSantiago, Bryce (Co-author) / Chen, Jenny (Co-author) / Chang, Karen (Co-author) / Baldridge, Stephen (Co-author) / Laub, Jeffrey (Thesis director) / Brooks, Daniel (Committee member) / Department of Information Systems (Contributor, Contributor) / Department of Finance (Contributor) / Department of Supply Chain Management (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134822-Thumbnail Image.png
Description
Smart cities ""utilize information and communication technologies with the aim to increase the life quality of their inhabitants while providing sustainable development"". The Internet of Things (IoT) allows smart devices to communicate with each other using wireless technology. IoT is by far the most important component in the development of

Smart cities ""utilize information and communication technologies with the aim to increase the life quality of their inhabitants while providing sustainable development"". The Internet of Things (IoT) allows smart devices to communicate with each other using wireless technology. IoT is by far the most important component in the development of smart cities. Company X is a leader in the semiconductor industry looking to grow its revenue in the IoT space. This thesis will address how Company X can deliver IoT solutions to government municipalities with the goal of simultaneously increasing revenue through value-added engagement and decreasing spending by more efficiently managing infrastructure upgrades.
ContributorsJiang, Yichun (Co-author) / Davidoff, Eric (Co-author) / Dawoud, Mariam (Co-author) / Rodenbaugh, Ryan (Co-author) / Sinclair, Brynn (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Mike (Committee member) / Department of Information Systems (Contributor) / Department of Finance (Contributor) / Department of Supply Chain Management (Contributor) / Department of Psychology (Contributor) / School of Sustainability (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
137618-Thumbnail Image.png
Description
Currently conventional Subtitle D landfills are the primary means of disposing of our waste in the United States. While this method of waste disposal aims at protecting the environment, it does so through the use of liners and caps that effectively freeze the breakdown of waste. Because this method can

Currently conventional Subtitle D landfills are the primary means of disposing of our waste in the United States. While this method of waste disposal aims at protecting the environment, it does so through the use of liners and caps that effectively freeze the breakdown of waste. Because this method can keep landfills active, and thus a potential groundwater threat for over a hundred years, I take an in depth look at the ability of bioreactor landfills to quickly stabilize waste. In the thesis I detail the current state of bioreactor landfill technologies, assessing the pros and cons of anaerobic and aerobic bioreactor technologies. Finally, with an industrial perspective, I conclude that moving on to bioreactor landfills as an alternative isn't as simple as it may first appear, and that it is a contextually specific solution that must be further refined before replacing current landfills.
ContributorsWhitten, George Avery (Author) / Kavazanjian, Edward (Thesis director) / Allenby, Braden (Committee member) / Houston, Sandra (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2013-05
137665-Thumbnail Image.png
Description
The semiconductor industry looks to constantly improve the efficiency of research and development in order to reduce costs and time to market. One such method was designed in order to decrease time spent inducing warpage in integrated circuits in an Intel research process. Intel's Atom product line seeks to compete

The semiconductor industry looks to constantly improve the efficiency of research and development in order to reduce costs and time to market. One such method was designed in order to decrease time spent inducing warpage in integrated circuits in an Intel research process. Intel's Atom product line seeks to compete with ARM architecture by entering the mobile devices CPU market. Due to the fundamental differences between the Atom's Bonnell architecture and the ARM architecture, the Intel Atom product line must utilize such improved research and development methods. Until power consumption is drastically lowered while maintaining processing speed, the Atom product line will not be able to effectively break into the mobile devices CPU market.
ContributorsLandseidel, Jack Adam (Author) / Adams, James (Thesis director) / Krause, Stephen (Committee member) / Anwar, Shahriar (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Materials Science and Engineering Program (Contributor)
Created2013-05
137694-Thumbnail Image.png
Description
The characteristics possessed by undergraduates who have enjoyed success in an intern position are defined. Through an interview process, four traits were identified: multitasking, strong team work understanding, an inquisitive nature, and application of a cross-disciplinary mindset. An exposition of how these four traits are employed to ensure success in

The characteristics possessed by undergraduates who have enjoyed success in an intern position are defined. Through an interview process, four traits were identified: multitasking, strong team work understanding, an inquisitive nature, and application of a cross-disciplinary mindset. An exposition of how these four traits are employed to ensure success in an internship setting is then given. Finally, a personal account of a project with Intel is expounded upon. This project addressed the unoptimized characterization test time of an Intel package quality control process. It improved throughput by developing a parallel testing method by increasing package carrier capacity and utilizing simultaneous testing. The final design led to a 4x increase of throughput rate.
ContributorsHusein, Sebastian Saint Tsei (Author) / Adams, James (Thesis director) / Krause, Stephen (Committee member) / Jarrell, Joseph (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor)
Created2013-05
Description

This paper serves as an analysis of the current operational conditions of a real-world company – referred to as “Company X” – with respect to the IC substrate industry. The cost of substrates, a crucial component in the production of Company X’s product, has recently diverged from Company X’s predictions

This paper serves as an analysis of the current operational conditions of a real-world company – referred to as “Company X” – with respect to the IC substrate industry. The cost of substrates, a crucial component in the production of Company X’s product, has recently diverged from Company X’s predictions and is contributing to declining profitability. This analysis aims to discover the underlying cause for price divergence and recommend potential resolutions to improve the forecast of substrate costs and profitability. The paper is organized as follows: Chapter 1 is an introduction to IC substrates and the industry as a whole, Chapter 2 is a breakdown of the specific factors responsible for substrate prices, and Chapter 3 delivers a final recommendation to Company X and concludes the paper.

ContributorsKing, Camden (Author) / O'Loughlin, Connor (Co-author) / Guillaume, Riley (Co-author) / Fares, Ari (Co-author) / Aggarwal, Bianca (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Mike (Committee member) / Barrett, The Honors College (Contributor) / Department of Finance (Contributor)
Created2023-05