Matching Items (6)
Filtering by

Clear all filters

Description
Abstract My documentary is about the concussion detection study with Arizona State Football, Translational Genomics Research Institute (TGen), Riddell and the Barrow Neurological Institute. Football players voluntarily participate in the study that aims to identify a biomarker released from the brain to identify if a player has suffered from a

Abstract My documentary is about the concussion detection study with Arizona State Football, Translational Genomics Research Institute (TGen), Riddell and the Barrow Neurological Institute. Football players voluntarily participate in the study that aims to identify a biomarker released from the brain to identify if a player has suffered from a concussion. The study uses blood, urine and saliva samples, along with head impact data from Riddell's Sideline Response System. The study is also focusing on the impact of sub-concussive hits and the effects. According to the Barrow Neurological Institute, 84% of respondents believe concussions are "a serious medical condition," and a third of Valley parents will not let their children play football. I interviewed an ASU football player who participated in the study and found out about his experiences with concussions. The severity of concussions has received a lot of attention in recent years, and this study hopes to mitigate concussions symptoms and the fear of concussions. According to the 2015 NFL Health and Safety Report, since 2012 the NFL reported concussions were down by 35%. I interviewed the TGen leaders of the study and the neurologist at the Barrow Concussion and Brain Injury center involved in the study to find out how they plan to find a biomarker and use it to develop an objective way to diagnose concussions. An example of a possible objective test is a mouthguard that changes from clear to blue after a player sustained a hit that resulted in a concussion. The 2015-2016 ASU football season marked the study's third year of research. At the time of my documentary, the study had no timeline to release data.
ContributorsSeki, Katryna Marie (Author) / Lodato, Mark (Thesis director) / Kurland, Brett (Committee member) / Walter Cronkite School of Journalism and Mass Communication (Contributor) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136134-Thumbnail Image.png
Description
Students' health is directly affected by concussions received while playing sports. While concussions are an increasingly talked about topic in professional sports there are still millions of youth athletes who sustain concussions every year. My creative project takes a look at the education of concussions and how schools can hel

Students' health is directly affected by concussions received while playing sports. While concussions are an increasingly talked about topic in professional sports there are still millions of youth athletes who sustain concussions every year. My creative project takes a look at the education of concussions and how schools can help minimize the impact concussions can have on their students.
ContributorsJackson, Benjamin Thomas (Author) / Fehler, Michelle (Thesis director) / Heywood, William (Committee member) / Barrett, The Honors College (Contributor) / The Design School (Contributor)
Created2015-05
134788-Thumbnail Image.png
Description
Concussions and traumatic brain injuries are mechanical events which can derive from no specific activity or event. However, these injuries occur often during athletic and sporting events but many athletes experiencing these symptoms go undiagnosed and continue playing without proper medical attention. The current gold standard for diagnosing athletes with

Concussions and traumatic brain injuries are mechanical events which can derive from no specific activity or event. However, these injuries occur often during athletic and sporting events but many athletes experiencing these symptoms go undiagnosed and continue playing without proper medical attention. The current gold standard for diagnosing athletes with concussions is to have medical professionals on the sidelines of events to perform qualitative standardized assessments which may not be performed frequently enough and are not specialized for each athlete. The purpose of this report is to discuss a study sanctioned by Arizona State University's Project HoneyBee and additional affiliations to validate a third-party mouth guard device product to recognize and detect force impacts blown to an athlete's head during athletic activity. Current technology in health monitoring medical devices can allow users to apply this device as an additional safety mechanism for early concussion awareness and diagnosis. This report includes the materials and methods used for experimentation, the discussion of its results, and the complications which occurred and areas for improvement during the preliminary efforts of this project. Participants in the study were five non-varsity ASU Wrestling athletes who volunteered to wear a third-party mouth guard device during sparring contact at practice. Following a needed calibration period for the devices, results were recorded both through visual observation and with the mouth guard devices using an accelerometer and gyroscope. This study provided a sound understanding for the operation and functionality of the mouth guard devices. The mouth guard devices have the capability to provide fundamental avenues of research for future investigations.
ContributorsTielke, Austin Wyatt (Author) / Ross, Heather (Thesis director) / LaBelle, Jeffrey (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
137674-Thumbnail Image.png
Description
Sports related concussions, or mild traumatic brain injuries (mTBI), have recently increased in prevalence, and thus gained a great deal of recognition from the public and the media. While the acute symptoms associated with concussions are well known, which include headaches, dizziness, vomiting, and fatigue, recent research has indicated that

Sports related concussions, or mild traumatic brain injuries (mTBI), have recently increased in prevalence, and thus gained a great deal of recognition from the public and the media. While the acute symptoms associated with concussions are well known, which include headaches, dizziness, vomiting, and fatigue, recent research has indicated that there can be severe chronic consequences of multiple conditions. Most notably, a disease called Chronic Traumatic Encephalopathy (CTE) has been linked to multiple mTBIs, which produces symptoms similar to Alzheimer's disease and dementia, in addition to personality changes, increased suicidality, and in some cases death. This knowledge has led the NFL to take steps to protect their players, and increase both the understanding and awareness of the problems associated with multiple concussions. This comes with many problems, however, as players and fans alike are quick to resist any type of change to the rules or policies present in football, in fear that it may damage the integrity of the game. The NFL is thus forced into a difficult position, and must balance public opinion and player safety. There are things that can be done, however, that do not threaten the game itself, such as investing in concussion research and safety equipment design that will more effectively protect the brain from concussions.
ContributorsAiello, Mimi Elizabeth (Author) / Olive, M. Foster (Thesis director) / Bimonte-Nelson, Heather (Committee member) / Camp, Bryan (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2013-05
Description

Current sideline concussion assessment tools are inaccurate and biased leading to undiagnosed concussions and possibly a second, more severe concussion. This study evaluated the effects of different surface types on postural stability using the Lockhart Monitor iPhone application in order to validate its potential use as a data-driven sideline concussion

Current sideline concussion assessment tools are inaccurate and biased leading to undiagnosed concussions and possibly a second, more severe concussion. This study evaluated the effects of different surface types on postural stability using the Lockhart Monitor iPhone application in order to validate its potential use as a data-driven sideline concussion assessment tool. Participants had three components of their postural sway recorded in 30 and 60-second trials on three different surface types, tile, turf, and natural grass, with eyes open and closed. The statistical analysis found that there was a significant difference between surface types for the sway area (p = 0.0268), but there was no difference for the sway path and velocity. These results call for further research to be conducted on the impact of surface types and the use of the Lockhart Monitor as a sideline concussion assessment tool with larger sample sizes and improved methodologies.

ContributorsDeacon, Kyle (Author) / McDonald, Mark (Co-author) / Lockhart, Thurmon (Thesis director) / Stabenfeldt, Sarah (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
Description

Current sideline concussion assessment tools are inaccurate and biased leading to undiagnosed concussions and possibly a second, more severe concussion. This study evaluated the effects of different surface types on postural stability using the Lockhart Monitor iPhone application in order to validate its potential use as a data-driven sideline concussion

Current sideline concussion assessment tools are inaccurate and biased leading to undiagnosed concussions and possibly a second, more severe concussion. This study evaluated the effects of different surface types on postural stability using the Lockhart Monitor iPhone application in order to validate its potential use as a data-driven sideline concussion assessment tool. Participants had three components of their postural sway recorded in 30 and 60-second trials on three different surface types, tile, turf, and natural grass, with eyes open and closed. The statistical analysis found that there was a significant difference between surface types for the sway area (p = 0.0268), but there was no difference for the sway path and velocity. These results call for further research to be conducted on the impact of surface types and the use of the Lockhart Monitor as a sideline concussion assessment tool with larger sample sizes and improved methodologies.

ContributorsMcDonald, Mark (Author) / Deacon, Kyle (Co-author) / Lockhart, Thurmon (Thesis director) / Stabenfeldt, Sarah (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05