Matching Items (4)
Filtering by

Clear all filters

136484-Thumbnail Image.png
Description
Previous studies have demonstrated that cranial base anatomy is influenced primarily by three different characteristics: brain shape, positional behavior, and facial growth (Lieberman et al. 2000). Although the timing of cranial base growth is not fully understood, features of the cranial base are frequently used to interpret the hominin fossil

Previous studies have demonstrated that cranial base anatomy is influenced primarily by three different characteristics: brain shape, positional behavior, and facial growth (Lieberman et al. 2000). Although the timing of cranial base growth is not fully understood, features of the cranial base are frequently used to interpret the hominin fossil record (Guy et al. 2005; White et al. 1994; Brunet et al. 2002). While specific aspects of cranial base morphology may be species-specific, there is sparse information on the developmental mechanisms driving these adult morphologies. The aim of this study is to 1) examine changes in the human cranial base form throughout ontogeny and 2) determine their relationship to the development of positional behavior and brain growth. This research asks: to what extent does human cranial base morphology vary before and after adult positional behavior is acquired? The null hypothesis is that there is no relationship between features of the cranial base and the development of positional behavior. Data are collected using 3D landmarks on n=35 human crania and analyzed with both Morphologika (O'Higgins and Jones 1999) and MorphoJ (Klingenberg 2011) to identify age related changes in shape. Results of this study demonstrate that most of the changes in cranial base form occur between dental eruption stages N and NJ1 between 0 and 2 years of age. These changes consist of a relative shortening of the anterior-posterior cranial base length, a more posterior positioning of the foramen magnum, and a more anterior position of the occipital condyles and separate the N and NJ1 dental development groups from other groups. This change coincides with the transition to upright posture in human children (Abitbol 1993), a significant period of brain growth (Neubauer 2009) and has implications for reconstructing positional behavior in fossil hominins. Despite new insights into the development of cranial base morphology, the utility of the cranial base in assigning hominin taxonomy remains inconclusive.
ContributorsMcgechie, Faye Rachele (Author) / Kimbel, William (Thesis director) / Schwartz, Gary (Committee member) / Hill, Cheryl (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2015-05
136980-Thumbnail Image.png
Description
Many of the derived features of the human skeleton can be divided into two adaptive suites: traits related to bipedalism and traits related to encephalization. The cervical spine connects these adaptive suites and is itself unique in its marked lordosis. I approach human cervical evolution from three directions: the functional

Many of the derived features of the human skeleton can be divided into two adaptive suites: traits related to bipedalism and traits related to encephalization. The cervical spine connects these adaptive suites and is itself unique in its marked lordosis. I approach human cervical evolution from three directions: the functional significance of cervical curvature, the identification of cervical lordosis in osteological material, and the representation of the cervical spine in the hominin fossil record.
ContributorsFatica, Lawrence Martin (Author) / Kimbel, William (Thesis director) / Reed, Kaye (Committee member) / Schwartz, Gary (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2014-05
Description
Craniofacial morphology in primates can vary on the basis of their diet because foods are often disparate in the amount and duration of force required to break them down. Therefore diet has the potential to exercise considerable selective pressure on the morphology of the masticatory system. The zygomatic arch

Craniofacial morphology in primates can vary on the basis of their diet because foods are often disparate in the amount and duration of force required to break them down. Therefore diet has the potential to exercise considerable selective pressure on the morphology of the masticatory system. The zygomatic arch is a known site of relatively high masticatory strain and yet the relationship between arch form and load type is relatively unknown in primates. While the relative position and robusticity of the arch is considered a key indicator of craniofacial adaptations to a mechanically challenging diet, and central to efforts to infer diet in past species, the relationships between morphology and diet type in this feature are not well established.

This study tested hypotheses using two diet categorizations: total consumption percent and food material properties (FMPs). The first hypothesis that cortical bone area (CA) and section moduli (bone strength) are positively correlated with masticatory loading tests whether CA and moduli measures were greatest anteriorly and decreased posteriorly along the arch. The results found these measures adhered to this predicted pattern in the majority of taxa. The second hypothesis examines sutural complexity in the zygomaticotemporal suture as a function of dietary loading differences by calculating fractal dimensions as indices of complexity. No predictable pattern was found linking sutural complexity and diet in this primate sample, though hard object consumers possessed the most complex sutures. Lastly, cross-sectional geometric properties were measured to investigate whether bending and torsional resistance and cross-sectional shape are related to differences in masticatory loading. The highest measures of mechanical resistance tracked with areas of greatest strain in the majority of taxa. Cross-sectional shape differences do appear to reflect dietary differences. FMPs were not correlated with cross-sectional variables, however pairwise comparisons suggest taxa that ingest foods of greater stiffness experience relatively larger measures of bending and torsional resistance. The current study reveals that internal and external morphological factors vary across the arch and in conjunction with diet in primates. These findings underscore the importance of incorporating these mechanical differences in models of zygomatic arch mechanical behavior and primate craniofacial biomechanics.
ContributorsEdmonds, Hallie Margaret (Author) / Reed, Kaye (Thesis advisor) / Schwartz, Gary (Committee member) / Vinyard, Chris (Committee member) / Arizona State University (Publisher)
Created2017
135275-Thumbnail Image.png
Description
In real world applications, materials undergo a simultaneous combination of tension, compression, and torsion as a result of high velocity impact. The split Hopkinson pressure bar (SHPB) is an effective tool for analyzing stress-strain response of materials at high strain rates but currently little can be done to produce a

In real world applications, materials undergo a simultaneous combination of tension, compression, and torsion as a result of high velocity impact. The split Hopkinson pressure bar (SHPB) is an effective tool for analyzing stress-strain response of materials at high strain rates but currently little can be done to produce a synchronized combination of these varying impacts. This research focuses on fabricating a flange which will be mounted on the incident bar of a SHPB and struck perpendicularly by a pneumatically driven striker thus allowing for torsion without interfering with the simultaneous compression or tension. Analytical calculations are done to determine size specifications of the flange to protect against yielding or failure. Based on these results and other design considerations, the flange and a complementary incident bar are created. Timing can then be established such that the waves impact the specimen at the same time causing simultaneous loading of a specimen. This thesis allows research at Arizona State University to individually incorporate all uniaxial deformation modes (tension, compression, and torsion) at high strain rates as well as combining either of the first two modes with torsion. Introduction of torsion will expand the testing capabilities of the SHPB at ASU and allow for more in depth analysis of the mechanical behavior of materials under impact loading. Combining torsion with tension or compression will promote analysis of a material's adherence to the Von Mises failure criterion. This greater understanding of material behavior can be implemented into models and simulations thereby improving the accuracy with which engineers can design new structures.
ContributorsVotroubek, Edward Daniel (Author) / Solanki, Kiran (Thesis director) / Oswald, Jay (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05