Matching Items (3)

135257-Thumbnail Image.png

Turmeric Effects on Serum Lipid Concentration

Description

Turmeric is the bright yellow root that has been used as a spice, healing remedy, and textile dye. Previous studies have suggested that the most active ingredient in turmeric, curcumin,

Turmeric is the bright yellow root that has been used as a spice, healing remedy, and textile dye. Previous studies have suggested that the most active ingredient in turmeric, curcumin, could reduce serum cholesterol concentration. However, most of these studies were conducted on animals and not many have been done on controlled human trials. This randomized, double-blinded, controlled crossover study evaluates the effects of turmeric on blood cholesterol concentrations including total cholesterol, LDL cholesterol, HLD cholesterol, and triglycerides. In this study, eight healthy participants between the ages of 18 and 45 were randomized to receive either 500mg capsules of turmeric or placebo for a period of three weeks. Following a wash-out period of five weeks, all participants were crossed over to the alternative treatment for another three weeks. After comparing the 3 week treatment and placebo phases, turmeric showed no significant effect on serum lipid concentrations. Furthermore, a slight increase in total cholesterol concentrations was observed following the turmeric phase when compared to the placebo phase.

Contributors

Agent

Created

Date Created
  • 2016-05

134746-Thumbnail Image.png

The Effects of Turmeric on Breath Hydrogen Emission and Small Bowel Transit Time

Description

Turmeric, scientifically known as Curcuma longa, is a tropical plant that is most often consumed in India.1 The rhizome of the plant is dried and then ground into a fine,

Turmeric, scientifically known as Curcuma longa, is a tropical plant that is most often consumed in India.1 The rhizome of the plant is dried and then ground into a fine, vibrant yellow powder. In addition to its function as a spice, turmeric is also used in traditional Ayervedic medicine due to its unique medical properties. These unique properties are attributed to the three major constituents of turmeric: curcumin, α-isocurcumin, and β-isocurcumin.2 Curcumin (Diferuloylmethane; C21H20O6), makes up 5% of turmeric by weight, and is the most prominent active ingredient within the turmeric root. Perhaps the most intriguing characteristic about curcumin is its ability to modulate targets such as, but not limited to, transcription factors, enzymes, apoptosis genes, and growth factors.1 Modern medical research has determined curcumin to be a viable treatment and prevention method for disease such as type II diabetes mellitus, rheumatoid arthritis, liver cirrhosis, and certain cancers. However, research on turmeric’s effects on gastrointestinal health is significantly lacking. This randomized, double-blind, cross-over trial looked to see if supplemental turmeric (500 mg as dried root powder) would significantly raise breath hydrogen emission (BHE) and reduce small bowel transit time (SBTT) in 8 female adults who were suffering from chronic constipation. Although supplemental turmeric did not significantly impact BHE or SBTT, the number of bowel movements greatly increased during turmeric intervention.

Contributors

Agent

Created

Date Created
  • 2016-12

155582-Thumbnail Image.png

Effect of Curcuma longa (turmeric) on postprandial glycemia in healthy, non-diabetic adults

Description

Curcumin is an active ingredient of Curcuma longa (Turmeric) and is studied extensively for its antioxidant, anti-inflammatory, anti-bacterial, anti-viral, and anti-cancer properties. The purpose of this study was to

Curcumin is an active ingredient of Curcuma longa (Turmeric) and is studied extensively for its antioxidant, anti-inflammatory, anti-bacterial, anti-viral, and anti-cancer properties. The purpose of this study was to examine the effects of turmeric on blood glucose and plasma insulin levels. The study utilized a placebo-controlled, randomized cross-over design with participants serving as their own control. Eight glucose tolerant healthy participants completed the full study. Three-weeks washout period was kept in between six-weeks. Prior to the test meal day, participants were asked to eat a bagel with their evening dinner. During the day of the test meal, participants reported to the test site in a rested and fasted state. Participants completed mashed potato meal tests with 500 mg of turmeric powder or placebo mixed in water, followed by 3 weeks of 500 mg turmeric or placebo supplement ingestion at home. During this visit blood glucose finger picks were obtained at fasting, 30, 60, 90, and 120 min post-meal. Blood plasma insulin at fasting and at 30 min after the test meal were also obtained. During week 4, participants reported to the test site in a rested and fasted state where fasting blood glucose finger pricks and blood plasma insulin were measured. During week 5 to 7, participants were given a washout time-period. During week 8, entire process from week 1 to 4 was repeated by interchanging the groups. Compared to placebo, reduction in postprandial blood glucose and insulin response were non-significant after ingestion of turmeric powder. Taking turmeric for 3 weeks had no change in blood glucose and insulin levels. However, taking turmeric powder supplements for 3 weeks, showed a 4.4% reduction in blood glucose. Change in insulin at 30 min were compared with baseline insulin level showing no significant change between placebo and turmeric group. Fasting insulin after 3-weeks consumption of turmeric did not show any significant change, but showed a larger effect size (0.08). Future research is essential to examine the turmeric powder supplement benefits over a long period of time in healthy adults and whether it is beneficial in preventing the occurrence of type 2 diabetes.

Contributors

Agent

Created

Date Created
  • 2017