Matching Items (6)

134676-Thumbnail Image.png

The Applicability of an Athletic Shoe Comprising an In-Shoe Force Measurement System

Description

Having the proper biomechanical and neuromuscular kinematics while performing an athletic motion is essential for athletes. Deviations from proper form in execution of the kinetic chain of an athletic movement

Having the proper biomechanical and neuromuscular kinematics while performing an athletic motion is essential for athletes. Deviations from proper form in execution of the kinetic chain of an athletic movement may result in suboptimal performance and oftentimes an elevated likelihood of injury. The solutions currently available to athletes to account for digression from proper form are limited to sight and feel analysis of movement by the athletes and coaches and basic medical and athletic analysis equipment that is unsuitable for real-time analysis, the rigor and speed of dynamic athletic motions, and in-field use. The solution proposed herein is one of an in-shoe force measurement and foot positioning system designed to measure the ground reaction force generated by and alignment of an athlete's feet during an athletic motion. Research into various sports has found that the feet play a foundational role in proper execution of the kinetic chain, wherein the alignment, positioning, force generation, and timing of the feet may dictate proper execution of subsequent segments in the kinetic chain. The goal of the present design is to provide athletes with a solution to allow for real-time kinematic analysis of athletic motions using an in-shoe force measurement and foot positioning system. An understanding into the compensatory effect of foot misalignment, mismatched timing, and under or overcompensated ground reaction force generation by the feet on ensuing segments of the kinetic chain in conjunction with the present design can allow for athletes to measure and determine their degree of accuracy in form execution and to predict potential injuries resulting from deviations in form. Our design of an athletic shoe comprising an in-shoe force measurement system provides a dynamic solution to sports-related injuries presently unavailable to athletes.

Contributors

Agent

Created

Date Created
  • 2017-05

148194-Thumbnail Image.png

ACL Injuries: Risk Factors, Prevention, and Recovery

Description

The purpose of this Barrett Thesis Project is to review the existing literature on ACL injuries specifically regarding their risk factors, prevention, and recovery options. The content of the

The purpose of this Barrett Thesis Project is to review the existing literature on ACL injuries specifically regarding their risk factors, prevention, and recovery options. The content of the review has been placed into four sections: physiological factors, biomechanical factors, surgery and recovery factors, as well as training factors. Physiological factors look at static structures and their impact on ACL injuries, more specifically, the role that variations on physical structure values can have on injury incidence. Biomechanical factors focus on the ways that movement can contribute to injury and the ways that incorrect movement or unanticipated movement can have on the structures of the knee. Surgery and recovery factors look at surgical techniques that have been used to correct ACL injuries and the details of their function as well as certain surgical techniques that have differing rates of success and how they can impact re-injury and rehabilitation rates. Finally, training factors analyze techniques that can be used in both pre-injury or post-injury situations therefore, this section looks at the ways that training can minimize re-injury as well as work towards preventing the initial injury. Overall, this research review looks at how these factors come together to contribute to an ACL injury and the ways that injury incidence can be minimized. Risk factors come together in order to create an undesirable situation in which the ACL ligament ruptures. These risk factors are either physiological or biomechanical in nature. As a result of injury, certain surgical techniques can be used that impact the success of a patient. Evidence for the benefit of training factors can then be applied in order to reduce injury risk or prevent future injuries.

Contributors

Agent

Created

Date Created
  • 2021-05

148165-Thumbnail Image.png

ACL Injuries: Risk Factors, Prevention, and Recovery

Description

The purpose of this Barrett Thesis Project is to review the existing literature on ACL injuries specifically regarding their risk factors, prevention, and recovery options. The content of the

The purpose of this Barrett Thesis Project is to review the existing literature on ACL injuries specifically regarding their risk factors, prevention, and recovery options. The content of the review has been placed into four sections: physiological factors, biomechanical factors, surgery and recovery factors, as well as training factors. Physiological factors look at static structures and their impact on ACL injuries, more specifically, the role that variations on physical structure values can have on injury incidence. Biomechanical factors focus on the ways that movement can contribute to injury and the ways that incorrect movement or unanticipated movement can have on the structures of the knee. Surgery and recovery factors look at surgical techniques that have been used to correct ACL injuries and the details of their function as well as certain surgical techniques that have differing rates of success and how they can impact re-injury and rehabilitation rates. Finally, training factors analyze techniques that can be used in both pre-injury or post-injury situations therefore, this section looks at the ways that training can minimize re-injury as well as work towards preventing the initial injury. Overall, this research review looks at how these factors come together to contribute to an ACL injury and the ways that injury incidence can be minimized. Risk factors come together in order to create an undesirable situation in which the ACL ligament ruptures. These risk factors are either physiological or biomechanical in nature. As a result of injury, certain surgical techniques can be used that impact the success of a patient. Evidence for the benefit of training factors can then be applied in order to reduce injury risk or prevent future injuries.

Contributors

Agent

Created

Date Created
  • 2021-05

151327-Thumbnail Image.png

Yoga and saxophone performance: the integration of two disciplines

Description

The integration of yoga into the music curriculum has the potential of offering many immediate and life-long benefits to musicians. Yoga can help address issues such as performance anxiety and

The integration of yoga into the music curriculum has the potential of offering many immediate and life-long benefits to musicians. Yoga can help address issues such as performance anxiety and musculoskeletal problems, and enhance focus and awareness during musical practice and performance. Although the philosophy of yoga has many similarities to the process of learning a musical instrument, the benefits of yoga for musicians is a topic that has gained attention only recently. This document explores several ways in which the practice and philosophy of yoga can be fused with saxophone pedagogy as one way to prepare students for a healthy and successful musical career. A six-week study at Arizona State University was conducted to observe the effects of regular yoga practice on collegiate saxophone students. Nine participants attended a sixty-minute "yoga for musicians" class twice a week. Measures included pre- and post- study questionnaires as well as personal journals kept throughout the duration of the study. These self-reported results showed that yoga had positive effects on saxophone playing. It significantly increased physical comfort and positive thinking, and improved awareness of habitual patterns and breath control. Student participants responded positively to the idea of integrating such a course into the music curriculum. The integration of yoga and saxophone by qualified professionals could also be a natural part of studio class and individual instruction. Carrie Koffman, professor of saxophone at The Hartt School, University of Hartford, has established one strong model for the combination of these disciplines. Her methods and philosophy, together with the basics of Western-style hatha yoga, clinical reports on performance injuries, and qualitative data from the ASU study are explored. These inquiries form the foundation of a new model for integrating yoga practice regularly into the saxophone studio.

Contributors

Agent

Created

Date Created
  • 2012

151265-Thumbnail Image.png

Accessing the centre: complementary conditioning & somatic wellness for competitive Irish step dance

Description

This thesis examines the integration of somatic principles into Irish Step Dancing. The researcher conducted a twelve week case study that explored how utilizing the Centre-line Support System in training

This thesis examines the integration of somatic principles into Irish Step Dancing. The researcher conducted a twelve week case study that explored how utilizing the Centre-line Support System in training competitive Irish Step Dancers, through integrating Alexander Technique and Bartenieff Fundamentals of Total Body Connectivity can generate increased height and efficiency in jumping and an improvement in upper-body carriage, while longitudinally reducing the occurrence of over-use injuries. Research occurred between January and March 2012 in Tucson, Arizona and Dublin, Ireland. Additional research and reflection occurred in Belfast, Glasgow, and London, United Kingdom; Limerick, Cork, and Galway, Ireland; Amsterdam, The Netherlands; Chicago, Illinois; Phoenix, Arizona; and Los Angeles, California.

Contributors

Agent

Created

Date Created
  • 2012

151775-Thumbnail Image.png

The collaborative pianist and body mapping: a guide to healthy body use for pianists and their musical partners

Description

ABSTRACT Musicians endure injuries at an alarming rate, largely due to the misuse of their bodies. Musicians move their bodies for a living and therefore should understand how to move

ABSTRACT Musicians endure injuries at an alarming rate, largely due to the misuse of their bodies. Musicians move their bodies for a living and therefore should understand how to move them in a healthy way. This paper presents Body Mapping as an injury prevention technique specifically directed toward collaborative pianists. A body map is the self-representation in one's brain that includes information on the structure, function, and size of one's body; Body Mapping is the process of refining one's body map to produce coordinated movement. In addition to preventing injury, Body Mapping provides a means to achieve greater musical artistry through the training of movement, attention, and the senses. With the main function of collaborating with one or more musical partners, a collaborative pianist will have the opportunity to share the knowledge of Body Mapping with many fellow musicians. This study demonstrates the author's credentials as a Body Mapping instructor, the current status of the field of collaborative piano, and the recommendation for increased body awareness. Information on the nature and abundance of injuries and Body Mapping concepts are also analyzed. The study culminates in a course syllabus entitled An Introduction to Collaborative Piano and Body Mapping with the objective of imparting fundamental collaborative piano skills integrated with proper body use. The author hopes to inform educators of the benefits of prioritizing health among their students and to provide a Body Mapping foundation upon which their students can build technique.

Contributors

Agent

Created

Date Created
  • 2013