Matching Items (6)
Filtering by

Clear all filters

Description
A continuously and stably stratified fluid contained in a square cavity subjected to harmonic body forcing is studied numerically by solving the Navier-Stokes equations under the Boussinesq approximation. Complex dynamics are observed near the onset of instability of the basic state, which is a flow configuration that is always an

A continuously and stably stratified fluid contained in a square cavity subjected to harmonic body forcing is studied numerically by solving the Navier-Stokes equations under the Boussinesq approximation. Complex dynamics are observed near the onset of instability of the basic state, which is a flow configuration that is always an exact analytical solution of the governing equations. The instability of the basic state to perturbations is first studied with linear stability analysis (Floquet analysis), revealing a multitude of intersecting synchronous and subharmonic resonance tongues in parameter space. A modal reduction method for determining the locus of basic state instability is also shown, greatly simplifying the computational overhead normally required by a Floquet study. Then, a study of the nonlinear governing equations determines the criticality of the basic state's instability, and ultimately characterizes the dynamics of the lowest order spatial mode by the three discovered codimension-two bifurcation points within the resonance tongue. The rich dynamics include a homoclinic doubling cascade that resembles the logistic map and a multitude of gluing bifurcations.

The numerical techniques and methodologies are first demonstrated on a homogeneous fluid contained within a three-dimensional lid-driven cavity. The edge state technique and linear stability analysis through Arnoldi iteration are used to resolve the complex dynamics of the canonical shear-driven benchmark problem. The techniques here lead to a dynamical description of an instability mechanism, and the work serves as a basis for the remainder of the dissertation.
ContributorsYalim, Jason (Author) / Welfert, Bruno D. (Thesis advisor) / Lopez, Juan M. (Thesis advisor) / Jones, Donald (Committee member) / Tang, Wenbo (Committee member) / Platte, Rodrigo (Committee member) / Arizona State University (Publisher)
Created2019
137108-Thumbnail Image.png
Description
Using object-oriented programming in MATLAB, a collection of functions, named Fourfun, has been created to allow quick and accurate approximations of periodic functions with Fourier expansions. To increase efficiency and reduce the number of computations of the Fourier transform, Fourfun automatically determines the number of nodes necessary for representations that

Using object-oriented programming in MATLAB, a collection of functions, named Fourfun, has been created to allow quick and accurate approximations of periodic functions with Fourier expansions. To increase efficiency and reduce the number of computations of the Fourier transform, Fourfun automatically determines the number of nodes necessary for representations that are accurate to close to machine precision. Common MATLAB functions have been overloaded to keep the syntax of the Fourfun class as consistent as possible with the general MATLAB syntax. We show that the system can be used to efficiently solve several differential equations. Comparisons with Chebfun, a similar system based on Chebyshev polynomial approximations, are provided.
ContributorsMcleod, Kristyn Noelle (Author) / Platte, Rodrigo (Thesis director) / Gelb, Anne (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of International Letters and Cultures (Contributor)
Created2014-05
154866-Thumbnail Image.png
Description
Chapter 1 introduces some key elements of important topics such as; quantum mechanics,

representation theory of the Lorentz and Poincare groups, and a review of some basic rela- ´

tivistic wave equations that will play an important role in the work to follow. In Chapter 2,

a complex covariant form of the classical

Chapter 1 introduces some key elements of important topics such as; quantum mechanics,

representation theory of the Lorentz and Poincare groups, and a review of some basic rela- ´

tivistic wave equations that will play an important role in the work to follow. In Chapter 2,

a complex covariant form of the classical Maxwell’s equations in a moving medium or at

rest is introduced. In addition, a compact, Lorentz invariant, form of the energy-momentum

tensor is derived. In chapter 3, the concept of photon helicity is critically analyzed and its

connection with the Pauli-Lubanski vector from the viewpoint of the complex electromag- ´

netic field, E+ iH. To this end, a complex covariant form of Maxwell’s equations is used.

Chapter 4 analyzes basic relativistic wave equations for the classical fields, such as Dirac’s

equation, Weyl’s two-component equation for massless neutrinos and the Proca, Maxwell

and Fierz-Pauli equations, from the viewpoint of the Pauli-Lubanski vector and the Casimir ´

operators of the Poincare group. A connection between the spin of a particle/field and ´

consistency of the corresponding overdetermined system is emphasized in the massless

case. Chapter 5 focuses on the so-called generalized quantum harmonic oscillator, which

is a Schrodinger equation with a time-varying quadratic Hamiltonian operator. The time ¨

evolution of exact wave functions of the generalized harmonic oscillators is determined

in terms of the solutions of certain Ermakov and Riccati-type systems. In addition, it is

shown that the classical Arnold transform is naturally connected with Ehrenfest’s theorem

for generalized harmonic oscillators. In Chapter 6, as an example of the usefulness of the

methods introduced in Chapter 5 a model for the quantization of an electromagnetic field

in a variable media is analyzed. The concept of quantization of an electromagnetic field

in factorizable media is discussed via the Caldirola-Kanai Hamiltonian. A single mode

of radiation for this model is used to find time-dependent photon amplitudes in relation

to Fock states. A multi-parameter family of the squeezed states, photon statistics, and the

uncertainty relation, are explicitly given in terms of the Ermakov-type system.
ContributorsLanfear, Nathan A (Author) / Suslov, Sergei (Thesis advisor) / Kotschwar, Brett (Thesis advisor) / Platte, Rodrigo (Committee member) / Matyushov, Dmitry (Committee member) / Kuiper, Hendrik (Committee member) / Gardner, Carl (Committee member) / Arizona State University (Publisher)
Created2016
135973-Thumbnail Image.png
Description
Imaging technologies such as Magnetic Resonance Imaging (MRI) and Synthetic Aperture Radar (SAR) collect Fourier data and then process the data to form images. Because images are piecewise smooth, the Fourier partial sum (i.e. direct inversion of the Fourier data) yields a poor approximation, with spurious oscillations forming at the

Imaging technologies such as Magnetic Resonance Imaging (MRI) and Synthetic Aperture Radar (SAR) collect Fourier data and then process the data to form images. Because images are piecewise smooth, the Fourier partial sum (i.e. direct inversion of the Fourier data) yields a poor approximation, with spurious oscillations forming at the interior edges of the image and reduced accuracy overall. This is the well known Gibbs phenomenon and many attempts have been made to rectify its effects. Previous algorithms exploited the sparsity of edges in the underlying image as a constraint with which to optimize for a solution with reduced spurious oscillations. While the sparsity enforcing algorithms are fairly effective, they are sensitive to several issues, including undersampling and noise. Because of the piecewise nature of the underlying image, we theorize that projecting the solution onto the wavelet basis would increase the overall accuracy. Thus in this investigation we develop an algorithm that continues to exploit the sparsity of edges in the underlying image while also seeking to represent the solution using the wavelet rather than Fourier basis. Our method successfully decreases the effect of the Gibbs phenomenon and provides a good approximation for the underlying image. The primary advantages of our method is its robustness to undersampling and perturbations in the optimization parameters.
ContributorsFan, Jingjing (Co-author) / Mead, Ryan (Co-author) / Gelb, Anne (Thesis director) / Platte, Rodrigo (Committee member) / Archibald, Richard (Committee member) / School of Music (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
148333-Thumbnail Image.png
Description

This thesis attempts to explain Everettian quantum mechanics from the ground up, such that those with little to no experience in quantum physics can understand it. First, we introduce the history of quantum theory, and some concepts that make up the framework of quantum physics. Through these concepts, we reveal

This thesis attempts to explain Everettian quantum mechanics from the ground up, such that those with little to no experience in quantum physics can understand it. First, we introduce the history of quantum theory, and some concepts that make up the framework of quantum physics. Through these concepts, we reveal why interpretations are necessary to map the quantum world onto our classical world. We then introduce the Copenhagen interpretation, and how many-worlds differs from it. From there, we dive into the concepts of entanglement and decoherence, explaining how worlds branch in an Everettian universe, and how an Everettian universe can appear as our classical observed world. From there, we attempt to answer common questions about many-worlds and discuss whether there are philosophical ramifications to believing such a theory. Finally, we look at whether the many-worlds interpretation can be proven, and why one might choose to believe it.

ContributorsSecrest, Micah (Author) / Foy, Joseph (Thesis director) / Hines, Taylor (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
168481-Thumbnail Image.png
Description
Solving partial differential equations on surfaces has many applications including modeling chemical diffusion, pattern formation, geophysics and texture mapping. This dissertation presents two techniques for solving time dependent partial differential equations on various surfaces using the partition of unity method. A novel spectral cubed sphere method that utilizes the windowed

Solving partial differential equations on surfaces has many applications including modeling chemical diffusion, pattern formation, geophysics and texture mapping. This dissertation presents two techniques for solving time dependent partial differential equations on various surfaces using the partition of unity method. A novel spectral cubed sphere method that utilizes the windowed Fourier technique is presented and used for both approximating functions on spherical domains and solving partial differential equations. The spectral cubed sphere method is applied to solve the transport equation as well as the diffusion equation on the unit sphere. The second approach is a partition of unity method with local radial basis function approximations. This technique is also used to explore the effect of the node distribution as it is well known that node choice plays an important role in the accuracy and stability of an approximation. A greedy algorithm is implemented to generate good interpolation nodes using the column pivoting QR factorization. The partition of unity radial basis function method is applied to solve the diffusion equation on the sphere as well as a system of reaction-diffusion equations on multiple surfaces including the surface of a red blood cell, a torus, and the Stanford bunny. Accuracy and stability of both methods are investigated.
ContributorsIslas, Genesis Juneiva (Author) / Platte, Rodrigo (Thesis advisor) / Cochran, Douglas (Committee member) / Espanol, Malena (Committee member) / Kao, Ming-Hung (Committee member) / Renaut, Rosemary (Committee member) / Arizona State University (Publisher)
Created2021