Matching Items (4)
Filtering by

Clear all filters

156030-Thumbnail Image.png
Description
Cancer is a heterogeneous disease with discrete oncogenic mechanisms. P53 mutation is the most common oncogenic mutation in many cancers including breast cancer. This dissertation focuses on fundamental genetic alterations enforced by p53 mutation as an indirect target. p53 mutation upregulates the mevalonate pathway genes altering cholesterol biosynthesis and prenylation.

Cancer is a heterogeneous disease with discrete oncogenic mechanisms. P53 mutation is the most common oncogenic mutation in many cancers including breast cancer. This dissertation focuses on fundamental genetic alterations enforced by p53 mutation as an indirect target. p53 mutation upregulates the mevalonate pathway genes altering cholesterol biosynthesis and prenylation. Prenylation, a lipid modification, is required for small GTPases signaling cascades. Project 1 demonstrates that prenylation inhibition can specifically target cells harboring p53 mutation resulting in reduced tumor proliferation and migration. Mutating p53 is associated with Ras and RhoA activation and statin prevents this activity by inhibiting prenylation. Ras-related pathway genes were selected from the transcriptomic analysis for evaluating correlation to statin sensitivity. A gene signature of seventeen genes and TP53 genotype (referred to as MPR signature) is generated to predict response to statins. MPR signature is validated through two datasets of drug screening in cell lines. As advancements in targeted gene modification are rising, the CRISPR-Cas9 technology has emerged as a new cancer therapeutic strategy. One of the important risk factors in gene therapy is the immune recognition of the exogenous therapeutic tool, resulting in obstruction of treatment and possibly serious health consequences. Project 2 describes a method development that can potentially improve the safety and efficacy of gene-targeting proteins. A cohort of 155 healthy individuals was screened for pre-existing B cell and T cell immune response to the S. pyogenes Cas9 protein. We detected antibodies against Cas9 in more than 10% of the healthy population and identified two immunodominant T cell epitopes of this protein. A de-immunized Cas9 that maintains the wild-type functionality was engineered by mutating the identified T cell epitopes. The gene signature and method described here have the potential to improve strategies for genome-driven tumor targeting.
ContributorsRoshdi Ferdosi, Shayesteh (Author) / Anderson, Karen S (Thesis advisor) / LaBaer, Joshua (Thesis advisor) / Woodbury, Neel (Committee member) / Borges, Chad (Committee member) / Arizona State University (Publisher)
Created2017
157181-Thumbnail Image.png
Description
Measurements of different molecular species from single cells have the potential to reveal cell-to-cell variations, which are precluded by population-based measurements. An increasing percentage of researches have been focused on proteins, for its central roles in biological processes. Immunofluorescence (IF) has been a well-established protein analysis platform. To gain comprehensive

Measurements of different molecular species from single cells have the potential to reveal cell-to-cell variations, which are precluded by population-based measurements. An increasing percentage of researches have been focused on proteins, for its central roles in biological processes. Immunofluorescence (IF) has been a well-established protein analysis platform. To gain comprehensive insights into cell biology and diagnostic pathology, a crucial direction would be to increase the multiplexity of current single cell protein analysis technologies.

An azide-based chemical cleavable linker has been introduced to design and synthesis novel fluorescent probes. These probes allow cyclic immunofluorescence staining which leads to the feasibility of highly multiplexed single cell in situ protein profiling. These highly multiplexed imaging-based platforms have the potential to quantify more than 100 protein targets in cultured cells and more than 50 protein targets in single cells in tissues.

This approach has been successfully applied in formalin-fixed paraffin-embedded (FFPE) brain tissues. Multiplexed protein expression level results reveal neuronal heterogeneity in the human hippocampus.
ContributorsLiao, Renjie (Author) / Guo, Jia (Thesis advisor) / Borges, Chad (Committee member) / Liu, Yan (Committee member) / Arizona State University (Publisher)
Created2019
155019-Thumbnail Image.png
Description
In species with highly heteromorphic sex chromosomes, the degradation of one of the sex chromosomes can result in unequal gene expression between the sexes (e.g., between XX females and XY males) and between the sex chromosomes and the autosomes. Dosage compensation is a process whereby genes on the sex chromosomes

In species with highly heteromorphic sex chromosomes, the degradation of one of the sex chromosomes can result in unequal gene expression between the sexes (e.g., between XX females and XY males) and between the sex chromosomes and the autosomes. Dosage compensation is a process whereby genes on the sex chromosomes achieve equal gene expression which prevents deleterious side effects from having too much or too little expression of genes on sex chromsomes. The green anole is part of a group of species that recently underwent an adaptive radiation. The green anole has XX/XY sex determination, but the content of the X chromosome and its evolution have not been described. Given its status as a model species, better understanding the green anole genome could reveal insights into other species. Genomic analyses are crucial for a comprehensive picture of sex chromosome differentiation and dosage compensation, in addition to understanding speciation.

In order to address this, multiple comparative genomics and bioinformatics analyses were conducted to elucidate patterns of evolution in the green anole and across multiple anole species. Comparative genomics analyses were used to infer additional X-linked loci in the green anole, RNAseq data from male and female samples were anayzed to quantify patterns of sex-biased gene expression across the genome, and the extent of dosage compensation on the anole X chromosome was characterized, providing evidence that the sex chromosomes in the green anole are dosage compensated.

In addition, X-linked genes have a lower ratio of nonsynonymous to synonymous substitution rates than the autosomes when compared to other Anolis species, and pairwise rates of evolution in genes across the anole genome were analyzed. To conduct this analysis a new pipeline was created for filtering alignments and performing batch calculations for whole genome coding sequences. This pipeline has been made publicly available.
ContributorsRupp, Shawn Michael (Author) / Wilson Sayres, Melissa A (Thesis advisor) / Kusumi, Kenro (Committee member) / DeNardo, Dale (Committee member) / Arizona State University (Publisher)
Created2016
157862-Thumbnail Image.png
Description
Spatial resolved detection and quantification of ribonucleic acid (RNA) molecules in single cell is crucial for the understanding of inherent biological issues, like mechanism of gene regulation or the development and maintenance of cell fate. Conventional methods for single cell RNA profiling, like single-cell RNA sequencing (scRNA-seq) or single-molecule fluorescent

Spatial resolved detection and quantification of ribonucleic acid (RNA) molecules in single cell is crucial for the understanding of inherent biological issues, like mechanism of gene regulation or the development and maintenance of cell fate. Conventional methods for single cell RNA profiling, like single-cell RNA sequencing (scRNA-seq) or single-molecule fluorescent in situ hybridization (smFISH), suffer either from the loss of spatial information or the low detection throughput. In order to advance single-cell analysis, new approaches need to be developed with the ability to perform high-throughput detection while preserving spatial information of the subcellular location of target RNA molecules.

Novel approaches for highly multiplexed single cell in situ transcriptomic analysis were developed by our group to enable single-cell comprehensive RNA profiling in their native spatial contexts. Reiterative FISH was demonstrated to be able to detect >100 RNA species in single cell in situ, while more sophisticated approaches, consecutive FISH (C-FISH) and switchable fluorescent oligonucleotide based FISH (SFO-FISH), have the potential for whole transcriptome profiling at the single molecule sensitivity. The introduction of a cleavable fluorescent tyramide even enables sensitive RNA profiling in intact tissues with high throughput. These approaches will have wide applications in studies of systems biology, molecular diagnosis and targeted therapies.
ContributorsXiao, Lu, Ph.D (Author) / Guo, Jia (Thesis advisor) / Wang, Xu (Committee member) / Borges, Chad (Committee member) / Arizona State University (Publisher)
Created2019