Matching Items (4)
Filtering by

Clear all filters

134626-Thumbnail Image.png
Description
The ecological benefits provided by trees include improving air quality (Nowak, et. al., 2006), mitigating climate change by sequestering carbon (Nowak, 1993), providing animal habitats (Livingston, et. al., 2003), and reducing heat (Edmonson, 2016), among others. Trees also provide numerous social benefits, impacting urban sustainability in particular by improving human

The ecological benefits provided by trees include improving air quality (Nowak, et. al., 2006), mitigating climate change by sequestering carbon (Nowak, 1993), providing animal habitats (Livingston, et. al., 2003), and reducing heat (Edmonson, 2016), among others. Trees also provide numerous social benefits, impacting urban sustainability in particular by improving human health (Salmond, 2016), aesthetically and economically improving neighborhoods (Torres, 2012), and contributing to thriving communities by creating gathering spaces and even reducing crime (Abraham, et. al., 2010). Because of the tremendous potential of trees to provide social and ecological services, particularly in urban areas, tree planting has become an important facet of many sustainability initiatives. This thesis assesses one such initiative aimed at planting trees for the diverse benefits they provide. Valley Permaculture Alliance (VPA), a nonprofit based in Phoenix, Arizona, is known for its Shade Tree Program. The author conducted an internal, quantitative assessment of the program between August and December of 2015. The assessment included evaluation of several indicators of ecological and community health related to the presence of shade trees, culminating in a report released in 2016. This paper evaluates the use of sustainability indicators in the VPA assessment as well as their value in different types of organizations. It culminates with an assessment of VPA's strengths, challenges faced by the organization, and suggestions for its future development.
ContributorsJones, Michaela Martine (Author) / Larson, Kelli (Thesis director) / Eakin, Hallie (Committee member) / School of Sustainability (Contributor) / American Indian Studies Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134950-Thumbnail Image.png
Description
The beginnings of this paper developed from the initial question of: how can tribal nations create private economies on their reservations? Written and researched from an undergraduate student perspective, this paper begins to answer the question by analyzing the historical and current states of Indian Country's diverse tribal economies. Additionally,

The beginnings of this paper developed from the initial question of: how can tribal nations create private economies on their reservations? Written and researched from an undergraduate student perspective, this paper begins to answer the question by analyzing the historical and current states of Indian Country's diverse tribal economies. Additionally, this paper will identify various tribal economic development challenges with a specific emphasis on education attainment as a key factor. Then, a solution will be presented in the form of a tribal business program modeled within the W.P. Carey School of Business at Arizona State University located in Tempe, Arizona. The solution is grounded in the idea that a highly qualified workforce is the best resource for economic development.
ContributorsTso, Cora Lee (Author) / Miller, Robert (Thesis director) / Hillman, Amy (Committee member) / School of Politics and Global Studies (Contributor) / American Indian Studies Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
155884-Thumbnail Image.png
Description

Trees serve as a natural umbrella to mitigate insolation absorbed by features of the urban environment, especially building structures and pavements. For a desert community, trees are a particularly valuable asset because they contribute to energy conservation efforts, improve home values, allow for cost savings, and promote enhanced health and

Trees serve as a natural umbrella to mitigate insolation absorbed by features of the urban environment, especially building structures and pavements. For a desert community, trees are a particularly valuable asset because they contribute to energy conservation efforts, improve home values, allow for cost savings, and promote enhanced health and well-being. The main obstacle in creating a sustainable urban community in a desert city with trees is the scarceness and cost of irrigation water. Thus, strategically located and arranged desert trees with the fewest tree numbers possible potentially translate into significant energy, water and long-term cost savings as well as conservation, economic, and health benefits. The objective of this dissertation is to achieve this research goal with integrated methods from both theoretical and empirical perspectives.

This dissertation includes three main parts. The first part proposes a spatial optimization method to optimize the tree locations with the objective to maximize shade coverage on building facades and open structures and minimize shade coverage on building rooftops in a 3-dimensional environment. Second, an outdoor urban physical scale model with field measurement is presented to understand the cooling and locational benefits of tree shade. The third part implements a microclimate numerical simulation model to analyze how the specific tree locations and arrangements influence outdoor microclimates and improve human thermal comfort. These three parts of the dissertation attempt to fill the research gap of how to strategically locate trees at the building to neighborhood scale, and quantifying the impact of such arrangements.

Results highlight the significance of arranging residential shade trees across different geographical scales. In both the building and neighborhood scales, research results recommend that trees should be arranged in the central part of the building south front yard. More cooling benefits are provided to the building structures and outdoor microclimates with a cluster tree arrangement without canopy overlap; however, if residents are interested in creating a better outdoor thermal environment, open space between trees is needed to enhance the wind environment for better human thermal comfort. Considering the rapid urbanization process, limited water resources supply, and the severe heat stress in the urban areas, judicious design and planning of trees is of increasing importance for improving the life quality and sustaining the urban environment.

ContributorsZhao, Qunshan (Author) / Wentz, Elizabeth (Thesis advisor) / Sailor, David (Committee member) / Wang, Zhi-Hua (Committee member) / Arizona State University (Publisher)
Created2017
141386-Thumbnail Image.png
Description

The urban thermal environment varies not only from its rural surroundings but also within the urban area due to intra-urban differences in land-use and surface characteristics. Understanding the causes of this intra-urban variability is a first step in improving urban planning and development. Toward this end, a method for quantifying

The urban thermal environment varies not only from its rural surroundings but also within the urban area due to intra-urban differences in land-use and surface characteristics. Understanding the causes of this intra-urban variability is a first step in improving urban planning and development. Toward this end, a method for quantifying causes of spatial variability in the urban heat island has been developed. This paper presents the method as applied to a specific test case of Portland, Oregon. Vehicle temperature traverses were used to determine spatial differences in summertime ~2 m air temperature across the metropolitan area in the afternoon. A tree-structured regression model was used to quantify the land-use and surface characteristics that have the greatest influence on daytime UHI intensity. The most important urban characteristic separating warmer from cooler regions of the Portland metropolitan area was canopy cover. Roadway area density was also an important determinant of local UHI magnitudes. Specifically, the air above major arterial roads was found to be warmer on weekdays than weekends, possibly due to increased anthropogenic activity from the vehicle sector on weekdays. In general, warmer regions of the city were associated with industrial and commercial land-use. The downtown core, whilst warmer than the rural surroundings, was not the warmest part of the Portland metropolitan area. This is thought to be due in large part to local shading effects in the urban canyons.

ContributorsHart, Melissa A. (Author) / Sailor, David (Author)
Created2008-05-07