Matching Items (5)
Filtering by

Clear all filters

136677-Thumbnail Image.png
Description
Throughout the course of the Honors Thesis/Creative Project, the intent was to gain knowledge regarding national, state and community initiatives regarding Indigenous Language Revitalization and Maintenance (ILRA). For over a year, I had the opportunity to visit a total of five indigenous communities, including Pine Ridge, SD, Gila River Indian

Throughout the course of the Honors Thesis/Creative Project, the intent was to gain knowledge regarding national, state and community initiatives regarding Indigenous Language Revitalization and Maintenance (ILRA). For over a year, I had the opportunity to visit a total of five indigenous communities, including Pine Ridge, SD, Gila River Indian Community, AZ, White Mountain Apache, AZ, Cochiti Pueblo, NM and Santo Domingo Pueblo, NM. The goal was to learn about the status of their language, current ILRA initiatives as well as challenges and successes that face American Indian nations. During each visit, key elements to successful language revitalization initiatives were identified that could benefit those continuing their effort to reverse language loss as well as those looking to enter in the field of language revitalization.
ContributorsHutchinson, Jenna Michelle (Author) / Romero-Little, Mary Eunice (Thesis director) / Begay, Jolyana (Committee member) / Sims, Christine P. (Committee member) / Barrett, The Honors College (Contributor) / American Indian Studies Program (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2014-12
134626-Thumbnail Image.png
Description
The ecological benefits provided by trees include improving air quality (Nowak, et. al., 2006), mitigating climate change by sequestering carbon (Nowak, 1993), providing animal habitats (Livingston, et. al., 2003), and reducing heat (Edmonson, 2016), among others. Trees also provide numerous social benefits, impacting urban sustainability in particular by improving human

The ecological benefits provided by trees include improving air quality (Nowak, et. al., 2006), mitigating climate change by sequestering carbon (Nowak, 1993), providing animal habitats (Livingston, et. al., 2003), and reducing heat (Edmonson, 2016), among others. Trees also provide numerous social benefits, impacting urban sustainability in particular by improving human health (Salmond, 2016), aesthetically and economically improving neighborhoods (Torres, 2012), and contributing to thriving communities by creating gathering spaces and even reducing crime (Abraham, et. al., 2010). Because of the tremendous potential of trees to provide social and ecological services, particularly in urban areas, tree planting has become an important facet of many sustainability initiatives. This thesis assesses one such initiative aimed at planting trees for the diverse benefits they provide. Valley Permaculture Alliance (VPA), a nonprofit based in Phoenix, Arizona, is known for its Shade Tree Program. The author conducted an internal, quantitative assessment of the program between August and December of 2015. The assessment included evaluation of several indicators of ecological and community health related to the presence of shade trees, culminating in a report released in 2016. This paper evaluates the use of sustainability indicators in the VPA assessment as well as their value in different types of organizations. It culminates with an assessment of VPA's strengths, challenges faced by the organization, and suggestions for its future development.
ContributorsJones, Michaela Martine (Author) / Larson, Kelli (Thesis director) / Eakin, Hallie (Committee member) / School of Sustainability (Contributor) / American Indian Studies Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134950-Thumbnail Image.png
Description
The beginnings of this paper developed from the initial question of: how can tribal nations create private economies on their reservations? Written and researched from an undergraduate student perspective, this paper begins to answer the question by analyzing the historical and current states of Indian Country's diverse tribal economies. Additionally,

The beginnings of this paper developed from the initial question of: how can tribal nations create private economies on their reservations? Written and researched from an undergraduate student perspective, this paper begins to answer the question by analyzing the historical and current states of Indian Country's diverse tribal economies. Additionally, this paper will identify various tribal economic development challenges with a specific emphasis on education attainment as a key factor. Then, a solution will be presented in the form of a tribal business program modeled within the W.P. Carey School of Business at Arizona State University located in Tempe, Arizona. The solution is grounded in the idea that a highly qualified workforce is the best resource for economic development.
ContributorsTso, Cora Lee (Author) / Miller, Robert (Thesis director) / Hillman, Amy (Committee member) / School of Politics and Global Studies (Contributor) / American Indian Studies Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
141382-Thumbnail Image.png
Description

The City of Phoenix (Arizona, USA) developed a Tree and Shade Master Plan and a Cool Roofs initiative to ameliorate extreme heat during the summer months in their arid city. This study investigates the impact of the City's heat mitigation strategies on daytime microclimate for a pre-monsoon summer day under

The City of Phoenix (Arizona, USA) developed a Tree and Shade Master Plan and a Cool Roofs initiative to ameliorate extreme heat during the summer months in their arid city. This study investigates the impact of the City's heat mitigation strategies on daytime microclimate for a pre-monsoon summer day under current climate conditions and two climate change scenarios. We assessed the cooling effect of trees and cool roofs in a Phoenix residential neighborhood using the microclimate model ENVI-met. First, using xeric landscaping as a base, we created eight tree planting scenarios (from 0% canopy cover to 30% canopy cover) for the neighborhood to characterize the relationship between canopy cover and daytime cooling benefit of trees. In a second set of simulations, we ran ENVI-met for nine combined tree planting and landscaping scenarios (mesic, oasis, and xeric) with regular roofs and cool roofs under current climate conditions and two climate change projections. For each of the 54 scenarios, we compared average neighborhood mid-afternoon air temperatures and assessed the benefits of each heat mitigation measure under current and projected climate conditions. Findings suggest that the relationship between percent canopy cover and air temperature reduction is linear, with 0.14 °C cooling per percent increase in tree cover for the neighborhood under investigation. An increase in tree canopy cover from the current 10% to a targeted 25% resulted in an average daytime cooling benefit of up to 2.0 °C in residential neighborhoods at the local scale. Cool roofs reduced neighborhood air temperatures by 0.3 °C when implemented on residential homes. The results from this city-specific mitigation project will inform messaging campaigns aimed at engaging the city decision makers, industry, and the public in the green building and urban forestry initiatives.

ContributorsMiddel, Ariane (Author) / Chhetri, Nalini (Author) / Quay, Raymond (Author)
Created2015
141419-Thumbnail Image.png
Description

Shade plays an important role in designing pedestrian-friendly outdoor spaces in hot desert cities. This study investigates the impact of photovoltaic canopy shade and tree shade on thermal comfort through meteorological observations and field surveys at a pedestrian mall on Arizona State University’s Tempe campus. During the course of 1

Shade plays an important role in designing pedestrian-friendly outdoor spaces in hot desert cities. This study investigates the impact of photovoltaic canopy shade and tree shade on thermal comfort through meteorological observations and field surveys at a pedestrian mall on Arizona State University’s Tempe campus. During the course of 1 year, on selected clear calm days representative of each season, we conducted hourly meteorological transects from 7:00 a.m. to 6:00 p.m. and surveyed 1284 people about their thermal perception, comfort, and preferences. Shade lowered thermal sensation votes by approximately 1 point on a semantic differential 9-point scale, increasing thermal comfort in all seasons except winter. Shade type (tree or solar canopy) did not significantly impact perceived comfort, suggesting that artificial and natural shades are equally efficient in hot dry climates. Globe temperature explained 51 % of the variance in thermal sensation votes and was the only statistically significant meteorological predictor. Important non-meteorological factors included adaptation, thermal comfort vote, thermal preference, gender, season, and time of day. A regression of subjective thermal sensation on physiological equivalent temperature yielded a neutral temperature of 28.6 °C. The acceptable comfort range was 19.1 °C–38.1 °C with a preferred temperature of 20.8 °C. Respondents exposed to above neutral temperature felt more comfortable if they had been in air-conditioning 5 min prior to the survey, indicating a lagged response to outdoor conditions. Our study highlights the importance of active solar access management in hot urban areas to reduce thermal stress.

ContributorsMiddel, Ariane (Author) / Selover, Nancy (Author) / Hagen, Bjorn (Author) / Chhetri, Nalini (Author)
Created2016-05-18